2 resultados para INCLUDING PROTEASE INHIBITORS
em Digital Commons at Florida International University
Resumo:
Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.
Resumo:
Pseudomonas aeruginosa, a Gram-negative bacterium, an opportunistic pathogen that infects individuals suffering from reduced immunity or damaged tissue. The treatment of these infections has become a major problem due to its increasing antibiotic resistance. Many multi-drug resistant isolates of P. aeruginosa can thwart most antibiotic classes including ?- lactams, fluoroquinolones, and aminoglycosides. Its ability to combat ?-lactams is in part due to expression of AmpC, a major chromosomally encoded ?-lactamase. The expression of ampC is positively regulated by AmpR. Besides antibiotic resistance, AmpR is an important regulator of various factors that are required for establishing acute and chronic infections. Loss of ampR makes P. aeruginosa susceptible to ?-lactams and less virulent than the wild type. We hypothesize that AmpR is a potential therapeutic target. In the absence of new drugs in the pipeline, the aim of this study is to find an AmpR-specific inhibitor to assist and improve the use of currently available ?- lactam treatment. A small-molecule library from Torrey Pines Institute will be used in this study. Two reporter systems, lux and lacZ, fused to a PampC promotor will be used to assess AmpR activity. Positive hits will be those that inhibit 50% PampC activity in the presence of sub inhibitory concentration of imipenem, a ?- lactam. The top positive hits will be screened for their ability to cause human cell-cytotoxicity. The non-cytotoxic hits will be assessed for their ability to affect P. aeruginosa virulence and antibiotic resistance using various in vitro assays. Determination of potential AmpR inhibitors will prove to be useful in fighting off infections and may save countless patients suffering from these infections.