2 resultados para Hypothalamus-pituitary-adrenal axis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple physiological systems regulate the electric communication signal of the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Fish were injected with neuroendocrine probes which identified pharmacologically relevant serotonin (5-HT) receptors similar to the mammalian 5-HT1AR and 5-HT2AR. Peptide hormones of the hypothalamic-pituitary-adrenal/interrenal axis also augment the electric waveform. These results indicate that the central serotonergic system interacts with the hypothalamic-pituitary-interrenal system to regulate communication signals in this species. The same neuroendocrine probes were tested in females before and after introducing androgens to examine the relationship between sex steroid hormones, the serotonergic system, melanocortin peptides, and EOD modulations. Androgens caused an increase in female B. pinnicaudatus responsiveness to other pharmacological challenges, particularly to the melanocortin peptide adrenocorticotropic hormone (ACTH). A forced social challenge paradigm was administered to determine if androgens are responsible for controlling the signal modulations these fish exhibit when they encounter conspecifics. Males and females responded similarly to this social challenge construct, however introducing androgens caused implanted females to produce more exaggerated responses. These results confirm that androgens enhance an individual's capacity to produce an exaggerated response to challenge, however another unidentified factor appears to regulate sex-specific behaviors in this species. These results suggest that the rapid electric waveform modulations B. pinnicaudatus produces in response to conspecifics are situation-specific and controlled by activation of different serotonin receptor types and the subsequent effect on release of pituitary hormones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple physiological systems regulate the electric communication signal of the weakly electric gymnotiform fish, Brachyhypopomuspinnicaudatus. Fish were injected with neuroendocrine probes which identified pharmacologically relevant serotonin (5-HT) receptors similar to the mammalian 5-HT1AR and 5-HT2AR. Peptide hormones of the hypothalamic-pituitary-adrenal/interrenal axis also augment the electric waveform. These results indicate that the central serotonergic system interacts with the hypothalamic-pituitaryinterrenal system to regulate communication signals in this species. The same neuroendocrine probes were tested in females before and after introducing androgens to examine the relationship between sex steroid hormones, the serotonergic system, melanocortin peptides, and EOD modulations. Androgens caused an increase in female B. pinnicaudatus responsiveness to other pharmacological challenges, particularly to the melanocortin peptide adrenocorticotropic hormone (ACTH). A forced social challenge paradigm was administered to determine if androgens are responsible for controlling the signal modulations these fish exhibit when they encounter conspecifics. Males and females responded similarly to this social challenge construct, however introducing androgens caused implanted females to produce more exaggerated responses. These results confirm that androgens enhance an individual's capacity to produce an exaggerated response to challenge, however another unidentified factor appears to regulate sex-specific behaviors in this species. These results suggest that the rapid electric waveform modulations B. pinnicaudatus produces in response to conspecifics are situation-specific and controlled by activation of different serotonin receptor types and the subsequent effect on release of pituitary hormones.