2 resultados para Hydrogel

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial cell transplantation can compensate for the loss of necrotic cardiomyocytes. The objective of this research study was to reformulate the hydrogel with concentrations of growth factors, such as Leukemia Inhibitory Factor (LIF), Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL-6). A controlled delivery system of PEO-PPO-PEO was formulated for release of a single growth factor and of multiple growth factors. Cytotoxicity and proliferation assay for single growth factors starting with 4000 skeletal myoblasts yielded their highest proliferation at 4 days with HGF (25,500 cells) and LIF (42,000 cells), while IL-6 (115,000 cells) generated its highest proliferation at 5 days. Combination of LIF and IL-6 resulted in highest proliferation at day 2 (220,000 cells), HGF and LIF (108,000 cells), and HGF and IL-6 (80,000 cells) both at 5 days. Viability at 37°C was maintained during the five days at 98-99%. The formulation was successful in myotube formation while maintaining a high purity of myoblasts in culture. The new formulation induced controlled release of growth factors and skeletal myoblasts delivery under favorable conditions while increasing the proliferation of myoblasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage injuries occur frequently in the knee joint. Several methods have been implemented clinically, to treat osteochondral defects but none have been able to produce a long term, durable solution. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the tissue engineered cartilage and native tissue, mainly subchondral bone and native cartilage, remains a major challenge. The overall objective of this research is to find a solution for the current problem of dislodgment of tissue engineered cartilage at the defect site for the treatment of degraded cartilage that has been caused due to knee injuries or because of mild to moderate level of osteoarthritis. For this, an in-vitro model was created to analyze the integration of tissue engineered cartilage with the bone, healthy and diseased cartilage over time. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. We also investigated the application of HA nanoparticles to promote enhance integration between tissue engineered cartilage and native cartilage both in healthy and diseased states. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone and also with diseased cartilage) compared to the constructs without HA (p < 0.05), after 28 days of culture. These findings indicate that the incorporation of HA nanoparticles permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.^