17 resultados para Household resource allocation
em Digital Commons at Florida International University
Resumo:
This dissertation discussed resource allocation mechanisms in several network topologies including infrastructure wireless network, non-infrastructure wireless network and wire-cum-wireless network. Different networks may have different resource constrains. Based on actual technologies and implementation models, utility function, game theory and a modern control algorithm have been introduced to balance power, bandwidth and customers' satisfaction in the system. ^ In infrastructure wireless networks, utility function was used in the Third Generation (3G) cellular network and the network was trying to maximize the total utility. In this dissertation, revenue maximization was set as an objective. Compared with the previous work on utility maximization, it is more practical to implement revenue maximization by the cellular network operators. The pricing strategies were studied and the algorithms were given to find the optimal price combination of power and rate to maximize the profit without degrading the Quality of Service (QoS) performance. ^ In non-infrastructure wireless networks, power capacity is limited by the small size of the nodes. In such a network, nodes need to transmit traffic not only for themselves but also for their neighbors, so power management become the most important issue for the network overall performance. Our innovative routing algorithm based on utility function, sets up a flexible framework for different users with different concerns in the same network. This algorithm allows users to make trade offs between multiple resource parameters. Its flexibility makes it a suitable solution for the large scale non-infrastructure network. This dissertation also covers non-cooperation problems. Through combining game theory and utility function, equilibrium points could be found among rational users which can enhance the cooperation in the network. ^ Finally, a wire-cum-wireless network architecture was introduced. This network architecture can support multiple services over multiple networks with smart resource allocation methods. Although a SONET-to-WiMAX case was used for the analysis, the mathematic procedure and resource allocation scheme could be universal solutions for all infrastructure, non-infrastructure and combined networks. ^
Resumo:
The increasing needs for computational power in areas such as weather simulation, genomics or Internet applications have led to sharing of geographically distributed and heterogeneous resources from commercial data centers and scientific institutions. Research in the areas of utility, grid and cloud computing, together with improvements in network and hardware virtualization has resulted in methods to locate and use resources to rapidly provision virtual environments in a flexible manner, while lowering costs for consumers and providers. ^ However, there is still a lack of methodologies to enable efficient and seamless sharing of resources among institutions. In this work, we concentrate in the problem of executing parallel scientific applications across distributed resources belonging to separate organizations. Our approach can be divided in three main points. First, we define and implement an interoperable grid protocol to distribute job workloads among partners with different middleware and execution resources. Second, we research and implement different policies for virtual resource provisioning and job-to-resource allocation, taking advantage of their cooperation to improve execution cost and performance. Third, we explore the consequences of on-demand provisioning and allocation in the problem of site-selection for the execution of parallel workloads, and propose new strategies to reduce job slowdown and overall cost.^
Resumo:
The increasing needs for computational power in areas such as weather simulation, genomics or Internet applications have led to sharing of geographically distributed and heterogeneous resources from commercial data centers and scientific institutions. Research in the areas of utility, grid and cloud computing, together with improvements in network and hardware virtualization has resulted in methods to locate and use resources to rapidly provision virtual environments in a flexible manner, while lowering costs for consumers and providers. However, there is still a lack of methodologies to enable efficient and seamless sharing of resources among institutions. In this work, we concentrate in the problem of executing parallel scientific applications across distributed resources belonging to separate organizations. Our approach can be divided in three main points. First, we define and implement an interoperable grid protocol to distribute job workloads among partners with different middleware and execution resources. Second, we research and implement different policies for virtual resource provisioning and job-to-resource allocation, taking advantage of their cooperation to improve execution cost and performance. Third, we explore the consequences of on-demand provisioning and allocation in the problem of site-selection for the execution of parallel workloads, and propose new strategies to reduce job slowdown and overall cost.
Resumo:
The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
In this paper, a heterogeneous network composed of femtocells deployed within a macrocell network is considered, and a quality-of-service (QoS)-oriented fairness metric which captures important characteristics of tiered network architectures is proposed. Using homogeneous Poisson processes, the sum capacities in such networks are expressed in closed form for co-channel, dedicated channel, and hybrid resource allocation methods. Then a resource splitting strategy that simultaneously considers capacity maximization, fairness constraints, and QoS constraints is proposed. Detailed computer simulations utilizing 3GPP simulation assumptions show that a hybrid allocation strategy with a well-designed resource split ratio enjoys the best cell-edge user performance, with minimal degradation in the sum throughput of macrocell users when compared with that of co-channel operation.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.
Resumo:
With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.
Resumo:
This dissertation presents an analysis of the impacts of trade policy reforms in Sri Lanka. A Computable General Equilibrium (CGE) model is constructed with detailed description of the domestic production structure and foreign trade. The model is then used to investigate the effects of trade policy reforms on resource allocation and welfare.^ Prior to 1977, Sri Lanka maintained stringent control over its imports through rigid quantitative restrictions. A new economic policy reform package was introduced in 1977, and it shifted Sri Lanka's development strategy toward an export oriented policy regime. The shift of policy focus from a restrictive trade regime toward a more open trade regime is expected to have a significant impact on the volume of external trade, domestic production structure, allocation of resources, and social welfare.^ Simulations are carried out to assess the effects of three major policy reforms: (1) a devaluation of the Sri Lanka rupee, (2) a partial or a complete elimination of export duties, and (3) a devaluation-cum-removal of export duties.^ Simulation results indicate that the macroeconomic impact of a devaluation-cum-removal of export duties can be substantial. They also suggest that the resource-pull effects of a devaluation and a devaluation-cum-export duty removal policy are significant. However, the model shows that a devaluation combined with an export duty reduction is likely to be a superior strategy. ^
Resumo:
The purpose of this research is design considerations for environmental monitoring platforms for the detection of hazardous materials using System-on-a-Chip (SoC) design. Design considerations focus on improving key areas such as: (1) sampling methodology; (2) context awareness; and (3) sensor placement. These design considerations for environmental monitoring platforms using wireless sensor networks (WSN) is applied to the detection of methylmercury (MeHg) and environmental parameters affecting its formation (methylation) and deformation (demethylation). ^ The sampling methodology investigates a proof-of-concept for the monitoring of MeHg using three primary components: (1) chemical derivatization; (2) preconcentration using the purge-and-trap (P&T) method; and (3) sensing using Quartz Crystal Microbalance (QCM) sensors. This study focuses on the measurement of inorganic mercury (Hg) (e.g., Hg2+) and applies lessons learned to organic Hg (e.g., MeHg) detection. ^ Context awareness of a WSN and sampling strategies is enhanced by using spatial analysis techniques, namely geostatistical analysis (i.e., classical variography and ordinary point kriging), to help predict the phenomena of interest in unmonitored locations (i.e., locations without sensors). This aids in making more informed decisions on control of the WSN (e.g., communications strategy, power management, resource allocation, sampling rate and strategy, etc.). This methodology improves the precision of controllability by adding potentially significant information of unmonitored locations.^ There are two types of sensors that are investigated in this study for near-optimal placement in a WSN: (1) environmental (e.g., humidity, moisture, temperature, etc.) and (2) visual (e.g., camera) sensors. The near-optimal placement of environmental sensors is found utilizing a strategy which minimizes the variance of spatial analysis based on randomly chosen points representing the sensor locations. Spatial analysis is employed using geostatistical analysis and optimization occurs with Monte Carlo analysis. Visual sensor placement is accomplished for omnidirectional cameras operating in a WSN using an optimal placement metric (OPM) which is calculated for each grid point based on line-of-site (LOS) in a defined number of directions where known obstacles are taken into consideration. Optimal areas of camera placement are determined based on areas generating the largest OPMs. Statistical analysis is examined by using Monte Carlo analysis with varying number of obstacles and cameras in a defined space. ^
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
The purpose of this paper is to present an alternate framework for evaluating strategic decisions of hospitality businesses in developing nations, particularly small- and medium-sized enterprises (SMEs). While strategy literature is extensive and diverse, it remains focused on developed nation contexts. By default, so is the case with hospitality strategy literature. This has created a paucity of research for hospitality businesses in developing nations; these businesses are largely SMEs in dynamic environments seldom similar to the ones in developed nations. Therefore, the proposed framework emphasizes the role of environment, and its relationship to strategic choice, resource allocation, and strategy evaluation. A set of research questions is also proposed.
Resumo:
The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.