8 resultados para High resolution camera

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake Analyzer is a numerical code coupled with supporting visualization tools for determining indices of mixing and stratification that are critical to the biogeochemical cycles of lakes and reservoirs. Stability indices, including Lake Number, Wedderburn Number, Schmidt Stability, and thermocline depth are calculated according to established literature definitions and returned to the user in a time series format. The program was created for the analysis of high-frequency data collected from instrumented lake buoys, in support of the emerging field of aquatic sensor network science. Available outputs for the Lake Analyzer program are: water temperature (error-checked and/or down-sampled), wind speed (error-checked and/or down-sampled), metalimnion extent (top and bottom), thermocline depth, friction velocity, Lake Number, Wedderburn Number, Schmidt Stability, mode-1 vertical seiche period, and Brunt-Väisälä buoyancy frequency. Secondary outputs for several of these indices delineate the parent thermocline depth (seasonal thermocline) from the shallower secondary or diurnal thermocline. Lake Analyzer provides a program suite and best practices for the comparison of mixing and stratification indices in lakes across gradients of climate, hydro-physiography, and time, and enables a more detailed understanding of the resulting biogeochemical transformations at different spatial and temporal scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of materials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar 16O1H+, and 40Ca 16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the analytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 μg g-1 and 0.14 μg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. ^ The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. ^ Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis) samples was achieved using the developed method. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping of vegetation patterns over large extents using remote sensing methods requires field sample collections for two different purposes: (1) the establishment of plant association classification systems from samples of relative abundance estimates; and (2) training for supervised image classification and accuracy assessment of satellite data derived maps. One challenge for both procedures is the establishment of confidence in results and the analysis across multiple spatial scales. Continuous data sets that enable cross-scale studies are very time consuming and expensive to acquire and such extensive field sampling can be invasive. The use of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field sampling and can provide large volume, spatially continuous, reference information that can meet the challenges of confidence building and multi-scale analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.