14 resultados para High performance concrete
em Digital Commons at Florida International University
Resumo:
The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.
Resumo:
Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.
Resumo:
The contributions of this dissertation are in the development of two new interrelated approaches to video data compression: (1) A level-refined motion estimation and subband compensation method for the effective motion estimation and motion compensation. (2) A shift-invariant sub-decimation decomposition method in order to overcome the deficiency of the decimation process in estimating motion due to its shift-invariant property of wavelet transform. ^ The enormous data generated by digital videos call for an intense need of efficient video compression techniques to conserve storage space and minimize bandwidth utilization. The main idea of video compression is to reduce the interpixel redundancies inside and between the video frames by applying motion estimation and motion compensation (MEMO) in combination with spatial transform coding. To locate the global minimum of the matching criterion function reasonably, hierarchical motion estimation by coarse to fine resolution refinements using discrete wavelet transform is applied due to its intrinsic multiresolution and scalability natures. ^ Due to the fact that most of the energies are concentrated in the low resolution subbands while decreased in the high resolution subbands, a new approach called level-refined motion estimation and subband compensation (LRSC) method is proposed. It realizes the possible intrablocks in the subbands for lower entropy coding while keeping the low computational loads of motion estimation as the level-refined method, thus to achieve both temporal compression quality and computational simplicity. ^ Since circular convolution is applied in wavelet transform to obtain the decomposed subframes without coefficient expansion, symmetric-extended wavelet transform is designed on the finite length frame signals for more accurate motion estimation without discontinuous boundary distortions. ^ Although wavelet transformed coefficients still contain spatial domain information, motion estimation in wavelet domain is not as straightforward as in spatial domain due to the shift variance property of the decimation process of the wavelet transform. A new approach called sub-decimation decomposition method is proposed, which maintains the motion consistency between the original frame and the decomposed subframes, improving as a consequence the wavelet domain video compressions by shift invariant motion estimation and compensation. ^
Resumo:
Unique electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) have made them one of the most promising candidates for next-generation nanoelectronics. Efficient utilization of the exceptional properties of SWNTs requires controlling their growth direction (e.g., vertical, horizontal) and morphologies (e.g., straight, junction, coiled). ^ In this dissertation, the catalytic effect on the branching of SWNTs, Y-shaped SWNTs (Y-SWNTs), was investigated. The formation of Y-shaped branches was found to be dependent on the composition of the catalysts. Easier carbide formers have a strong tendency to attach to the sidewall of SWNTs and thus enhance the degree of branching. Y-SWNTs based field-effect transistors (FETs) were fabricated and modulated by the metallic branch of the Y-SWNTs, exhibiting ambipolar characteristics at room temperature. A subthreshold swing of 700 mV/decade and an on/off ratio of 105 with a low off-state current of 10-13 A were obtained. The transport phenomena associated with Y- and cross-junction configurations reveals that the conduction mechanism in the SWNT junctions is governed by thermionic emission at T > 100 K and by tunneling at T < 100 K. ^ Furthermore, horizontally aligned SWNTs were synthesized by the controlled modification of external fields and forces. High performance carbon nanotube FETs and logic circuit were demonstrated utilizing the aligned SWNTs. It is found that the hysteresis in CNTFETs can be eliminated by removing absorbed water molecules on the CNT/SiO2 interface by vacuum annealing, hydrophobic surface treatment, and surface passivation. SWNT “serpentines” were synthesized by utilization of the interaction between drag force from gas flow and Van der Waals force with substrates. The curvature of bent SWNTs could be tailored by adjusting the gas flow rate, and changing the gas flow direction with respect to the step-edges on a single-crystal quartz substrate. Resistivity of bent SWNTs was observed to increase with curvature, which can be attributed to local deformations and possible chirality shift at curved part. ^ Our results show the successful synthesis of SWNTs having controllable morphologies and directionality. The capability of tailoring the electrical properties of SWNTs makes it possible to build an all-nanotube device by integrating SWNTs, having different functionalities, into complex circuits. ^
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
The present study measured a chemotherapy drug, etoposide, in pig cerebrospinal fluid after intraventricular administrations were made directly into the fourth ventricle of the brain; cytotoxic concentrations for a twenty-four hour period after infusions. The analytical method developed validates the potential treatment of malignant brain tumors. The increase in serum carotenoid concentration in 30 healthy individuals was measured after supplementation with lutein. HPLC analysis of serum levels of carotenoids showed an increase in the concentration of lutein and a constant concentration of other major serum carotenoids. An initial attempt to measure the enthalpy of aggregation of xanthophylls was conducted by using ultraviolet-visible spectroscopy. The enthalpy of lutein aggregation and AH range of zeaxanthin disordering of aggregation are reported. Monomethyl ether of lutein did not aggregate in any of the aqueous solutions.
Resumo:
The objective of this research was to investigate the reason lumps occur in high-slump concrete and develop adequate batching procedures for a lumps-free high-slump ready-mix concrete mix used by the Florida Department of Transportation. Cement balls are round lumps of cement, sand, and coarse aggregate, typically about the size of a baseball that frequently occur in high-slump concrete. Such lumps or balls jeopardize the structural integrity of structural members. Experiments were conducted at the CSR Rinker concrete plant in Miami, Florida, based on a protocol developed by a team of Florida Department of Transportation (FDOT) concrete engineers, Rinker personnel, and Florida International University faculty. A total of seventeen truckloads were investigated in two phases, between April 2001 and March 2002. The tests consisted of gathering data by varying load size, discharge rate, headwater content, and mixing revolutions. The major finding was that a usual load size and discharge rate, an initial headwater ratio of 30%, and an initial number of revolutions of 100 at 12 revolutions per minute seem to produce a lump-free high-slump concrete. It was concluded that inadequate mixing and batching procedures caused cement lumps. Recommendations regarding specific load size, discharge rates, number of mixing revolutions, and initial water content are made. Clear guidelines for a high-slump concrete batching protocol can be developed, with further testing based on these research conclusions.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.
Resumo:
The drugs studied in this work have been reportedly used to commit drug-facilitated sexual assault (DFSA), commonly known as "date rape". Detection of the drugs was performed using high-performance liquid chromatography with ultraviolet detection (HPLC/UV) and identified with high performance-liquid chromatography mass spectrometry (HPLC/MS) using selected ion monitoring (SIM). The objective of this study was to develop a single HPLC method for the simultaneous detection, identification and quantitation of these drugs. The following drugs were simultaneously analyzed: Gamma-hydroxybutyrate (GHB), scopolamine, lysergic acid diethylamide, ketamine, flunitrazepam, and diphenhydramine. The results showed increased sensitivity with electrospray (ES) ionization versus atmospheric pressure chemical ionization (APCI) using HPLC/MS. HPLC/ES/MS was approximately six times more sensitive than HPLC/APCI/MS and about fifty times more sensitive than HPLC/UV. A limit of detection (LOD) of 100 ppb was achieved for drug analysis using this method. The average linear regression coefficient of correlation squared (r2) was 0.933 for HPLC/UV and 0.998 for HPLC/ES/MS. The detection limits achieved by this method allowed for the detection of drug dosages used in beverage tampering. This method can be used to screen beverages suspected of drug tampering. The results of this study demonstrated that solid phase microextraction (SPME) did not improve sensitivity as an extraction technique when compared to direct injections of the drug standards.
Resumo:
Most of the moveable bridges use open grid steel decks, because these are factory assembled, light-weight, and easy to install. Open grid steel decks, however, are not as skid resistant as solid decks. Costly maintenance, high noise levels, poor riding comfort and susceptibility to vibrations are among the other disadvantages of these decks. The major objective of this research was to develop alternative deck systems which weigh no more than 25 lb/ft2, have solid riding surface, are no more than 4–5 in. thick and are able to withstand prescribed loading. Three deck systems were considered in this study: ultra-high performance concrete (UHPC) deck, aluminum deck and UHPC-fiber reinforced polymer (FRP) tube deck. UHPC deck was the first alternative system developed as a part of this project. Due to its ultra high strength, this type of concrete results in thinner sections, which helps satisfy the strict self-weight limit. A comprehensive experimental and analytical evaluation of the system was carried out to establish its suitability. Both single and multi-unit specimens with one or two spans were tested for static and dynamic loading. Finite element models were developed to predict the deck behavior. The study led to the conclusion that the UHPC bridge deck is a feasible alternative to open grid steel deck. Aluminum deck was the second alternative system studied in this project. A detailed experimental and analytical evaluation of the system was carried out. The experimental work included static and dynamic loading on the deck panels and connections. Analytical work included detailed finite element modeling. Based on the in-depth experimental and analytical evaluations, it was concluded that aluminum deck was a suitable alternative to open grid steel decks and is ready for implementation. UHPC-FRP tube deck was the third system developed in this research. Prestressed hollow core decks are commonly used, but the proposed type of steel-free deck is quite novel. Preliminary experimental evaluations of two simple-span specimens, one with uniform section and the other with tapered section were carried out. The system was shown to have good promise to replace the conventional open grid decks. Additional work, however, is needed before the system is recommended for field application.
Resumo:
As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.
Resumo:
Since the 1990s, scholars have paid special attention to public management’s role in theory and research under the assumption that effective management is one of the primary means for achieving superior performance. To some extent, this was influenced by popular business writings of the 1980s as well as the reinventing literature of the 1990s. A number of case studies but limited quantitative research papers have been published showing that management matters in the performance of public organizations. ^ My study examined whether or not management capacity increased organizational performance using quantitative techniques. The specific research problem analyzed was whether significant differences existed between high and average performing public housing agencies on select criteria identified in the Government Performance Project (GPP) management capacity model, and whether this model could predict outcome performance measures in a statistically significant manner, while controlling for exogenous influences. My model included two of four GPP management subsystems (human resources and information technology), integration and alignment of subsystems, and an overall managing for results framework. It also included environmental and client control variables that were hypothesized to affect performance independent of management action. ^ Descriptive results of survey responses showed high performing agencies with better scores on most high performance dimensions of individual criteria, suggesting support for the model; however, quantitative analysis found limited statistically significant differences between high and average performers and limited predictive power of the model. My analysis led to the following major conclusions: past performance was the strongest predictor of present performance; high unionization hurt performance; and budget related criterion mattered more for high performance than other model factors. As to the specific research question, management capacity may be necessary but it is not sufficient to increase performance. ^ The research suggested managers may benefit by implementing best practices identified through the GPP model. The usefulness of the model could be improved by adding direct service delivery to the model, which may also improve its predictive power. Finally, there are abundant tested concepts and tools designed to improve system performance that are available for practitioners designed to improve management subsystem support of direct service delivery.^
Resumo:
Compact thermal-fluid systems are found in many industries from aerospace to microelectronics where a combination of small size, light weight, and high surface area to volume ratio fluid networks are necessary. These devices are typically designed with fluid networks consisting of many small parallel channels that effectively pack a large amount of heat transfer surface area in a very small volume but do so at the cost of increased pumping power requirements. ^ To offset this cost the use of a branching fluid network for the distribution of coolant within a heat sink is investigated. The goal of the branch design technique is to minimize the entropy generation associated with the combination of viscous dissipation and convection heat transfer experienced by the coolant in the heat sink while maintaining compact high heat transfer surface area to volume ratios. ^ The derivation of Murray's Law, originally developed to predict the geometry of physiological transport systems, is extended to heat sink designs which minimze entropy generation. Two heat sink designs at different scales are built, and tested experimentally and analytically. The first uses this new derivation of Murray's Law. The second uses a combination of Murray's Law and Constructal Theory. The results of the experiments were used to verify the analytical and numerical models. These models were then used to compare the performance of the heat sink with other compact high performance heat sink designs. The results showed that the techniques used to design branching fluid networks significantly improves the performance of active heat sinks. The design experience gained was then used to develop a set of geometric relations which optimize the heat transfer to pumping power ratio of a single cooling channel element. Each element can be connected together using a set of derived geometric guidelines which govern branch diameters and angles. The methodology can be used to design branching fluid networks which can fit any geometry. ^