4 resultados para Heterogeneous Regressions Algorithms
em Digital Commons at Florida International University
Resumo:
Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.
Resumo:
Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera's point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ∼10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera's PSF. The algorithm can also improve dose estimation and treatment planning.^
Resumo:
Global connectivity is on the verge of becoming a reality to provide high-speed, high-quality, and reliable communication channels for mobile devices at anytime, anywhere in the world. In a heterogeneous wireless environment, one of the key ingredients to provide efficient and ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS), are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, call-dropping and blocking probabilities. This research presents a novel approach for of a Multi Attribute Decision Making (MADM) model based on an integrated fuzzy approach for target network selection.
Resumo:
Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera’s point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera’s PSF. The algorithm can also improve dose estimation and treatment planning.