6 resultados para Heteroaggregation Rate Constants
em Digital Commons at Florida International University
Resumo:
The purpose of this study is to characterize the degradation products of Irgarol 1051(2-methylthio-4-tertbutylamino-6-cyclopropylamino- s-triazine), a compound recently developed for use as an antifouling agent on boat hulls. The photolytic fate of this compound in different natural waters will be used in the development of a monitoring program designed to survey the occurrence of this compound and its degradation products in South Florida marinas, the Miami River and surrounding coastal areas. ^ The transformation of Irgarol 1051 and degradation rate constants were characterized in a photo-reactor under simulated natural conditions. The degradation pathway in the UVB-UVA region (300nm to 350nm) closely resembled the transformations under natural conditions in the pond, showing that both direct photolysis and the presence of natural sensitizers play an important role in the abiotic transformation of this compound. Irgarol 1051 has an average environmental half-life of 10 days in surface waters. Average concentrations from samples around Biscayne Bay and the Miami River increased from 1–5 ng/L during 1999 and increased to between 28 and 38 ng/L in 2001, respectively. Irgarol concentrations showed a strong correlation with concentrations of its major transformation product, M1, from samples collected as part of the study ([M1]/[Irgarol] = 0.247, R2 = 0.9165, n = 125). ^
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.
Resumo:
Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards aromatic compounds in cold environments, such as on Titan or in the interstellar medium.
Resumo:
The impact of ultrasound on improving the performance of a granular iron Permeable Reactive Barrier (PRB) in the degradation of Trichloroethylene (TCE) was evaluated. Two treatment columns made of clear Plexiglas with a height of 1ft and a diameter of 2 inches and filled with granular iron were used. One was fitted with 25Khz ultrasound probes. A solution of TCE was run through at constant flow rate. Samples obtained from the column at different residence times before and after sonication were analyzed for concentrations of TCE and used to generate concentration profiles to obtain rate constants, which were compared. An improvement of 23.4% in the reaction rate of TCE degradation was observed after sonication of the iron media suggesting that ultrasound may contribute to improving the performance of PRBs in the degradation of TCE in contaminated groundwater.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.
Resumo:
The focus of this research is to determine if a relationship exists between the stability constant and the initial uptake rate of a mercury species by bacteria. Cultures of the sulfate-reducing bacteria (SRB) strain Desulfovibrio desulfuricans G20 were washed with a bicarbonate buffer solution containing either lactate and sulfate or pyruvate and fumarate. The washed cell solutions were then spiked with either mercury bound to natural organic matter (Hg-NOM) or neutral mercury chloride (HgCl2), followed by sampling over time to provide kinetic data. Despite the significantly different stability constants for Hg-NOM and HgCl2, the calculated initial rate constants for mercury uptake for these two types of complexes appeared to be comparable. Uptake of mercury sulfide species was inconclusive due to possible formation of cinnabar. A simple model that is based on assumptions of passive diffusion and facilitated uptake of mercury by bacteria was evaluated for its potential to simulate the uptake. The model results only agreed with experimental data for HgCl2 uptake.