2 resultados para Hensleri, Philippi Gabrielis.
em Digital Commons at Florida International University
Resumo:
We assessed the diversity of woody plants at 15 forested sites in the Tansa Valley of Thane District, in Maharashtra, India. The fewest species (11) were seen at a degraded mangrove site near the river mouth, and the greatest number (150) in the rich semi-evergreen forest on Tungar Hill. For all sites there were 141 tree, 25 shrub and 15 liana species, a total of 181 species. Excluding the mangrove site, which had no species in common with the other 14 sites, we analyzed the species distributions in detail. 2 These sites ranged in area from 4 to 30 km each, had woody floras of 89 6 6 species, and varied in intensity of human impact. Despite a history of exploitation and substantial reduction in biomass from firewood collecting, set fires and illicit tree felling, considerable plant diversity remains in the area.We found a modest increase in species richness in transects away from two villages. We observed the exploitation of the forest by the principal users, primarily of the Warli Tribe. They exploited a wide variety of forest resources (92 species), for medicines, foods, construction materials, household goods, manure and other purposes. They collected 15 items for sale. By far the single most important item collected was firewood, which dramatically reduced forest biomass within 2 km of villages. The species distributions in these forest remnants are strongly nested, mostly due to varying degrees of disturbance at individual sites. The high species diversity on Tungar Hill is most likely a relict of the earlier character of forests throughout much of the valley. It merits the highest priorities for preservation, as a refuge for Western Ghat species at the northern limits of their distributions.
Resumo:
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.