10 resultados para Hellinger-Reissner generalized variational principle in complementary energy form
em Digital Commons at Florida International University
Resumo:
Since DSM-III-R criteria for Overanxious Disorder (OAD) was subsumed under Generalized Anxiety Disorder (GAD) in DSM-IV, three studies have investigated the overlap between the diagnoses. Although two studies have identified children meeting both OAD and GAD criteria (OAD/GAD group), a third study has identified children who met criteria for OAD, but not GAD (OAD group). Based on finding these two groups of children, we examined whether children in the OAD group (n= 30) could be differentiated from children in the OAD/GAD group (n=81) based on self and parent report of anxious symptoms and level of functional impairment. Conditional probability rates were also calculated for each of the DSM anxious symptoms to determine their overall clinicalutility. Findings revealed that the OAD group of children experienced fewer anxious symptoms than children in the OAD/GAD group, though both groups showed some amount of impairment. The implications for research and practice are discussed.
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN) N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. ^ A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)N reaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. ^ In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He( e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. ^ The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties. ^
Resumo:
Physical activity is recommended to facilitate weight management. However, some individuals may be unable to successfully manage their weight due to certain psychological and cognitive factors that trigger them to compensate for calories expended in exercise. The primary purpose of this study was to evaluate the effect of moderate-intensity exercise on lunch and 12-hour post-exercise energy intake (PE-EI) in normal weight and overweight sedentary males. Perceived hunger, mood, carbohydrate intake from beverages, and accuracy in estimating energy intake (EI) and energy expenditure (EE) were also assessed. The study consisted of two conditions, exercise (treadmill walking) and rest (sitting), with each participant completing each condition, in a counterbalanced-crossover design on two days. Eighty males, mean age 30 years (SD=8) were categorized into five groups according to weight (normal-/overweight), dietary restraint level (high/low), and dieting status (yes/no). Results of repeated measures, 5x2 ANOVA indicated that the main effects of condition and group, and the interaction were not significant for lunch or 12-hour PE-EI. Among overweight participants, dieters consumed significantly (p<0.05) fewer calories than non-dieters at lunch (M=822 vs. M=1149) and over 12 hours (M=1858 vs. M =2497). Overall, participants’ estimated exercise EE was significantly (p<0.01) higher than actual exercise EE, and estimated resting EE was significantly (p<0.001) lower than actual resting EE. Participants significantly (p<0.001) underestimated EI at lunch on both experimental days. Perceived hunger was significantly (p<0.05) lower after exercise (M=49 mm, SEM=3) than after rest (M=57 mm, SEM=3). Mood scores and carbohydrate intake from beverages were not influenced by weight, dietary restraint, and dieting status. In conclusion, a single bout of moderate-intensity exercise did not influence PE-EI in sedentary males in reference to weight, dietary restraint, and dieting status, suggesting that this population may not be at risk for overeating in response to exercise. Therefore, exercise can be prescribed and used as an effective tool for weight management. Results also indicated that there was an inability to accurately estimate EI (ad libitum lunch meal) and EE (60 minutes of moderate-intensity exercise). Inaccuracies in the estimation of calories for EI and EE could have the potential to unfavorably impact weight management.
Resumo:
Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.
Resumo:
The primary purpose of this study was to evaluate the effects of a single bout of moderate-intensity exercise on acute (ad libitum lunch) post-exercise energy intake (PE-EI) and 12-hour energy intake in normal-weight and overweight sedentary males. Accuracy in estimating energy intake (EI) and energy expenditure (EE), solid vs. liquid carbohydrate intake, mood, and perceived hunger were also assessed. The study consisted of two conditions, exercise and rest, with each subject participating in each condition, in a counterbalanced-crossover design on two days. The participants were randomly assigned to either the exercise or resting (seated) control condition on the first day of the experiment, and then the condition was reversed on the second day. Exercise consisted of walking on a treadmill at moderate-intensity for 60 minutes. Eighty males, mean age 30+8 years were categorized into five groups according to weight status (overweight/normal-weight), dietary restraint status (high/low), and dieting status (yes/no). The main effects of condition and group, and the interaction were not significant for acute (lunch) or 12-hour PE-EI. Overall, participants estimated EE for exercise at 46% higher than actual exercise EE, and they estimated EE for rest by 45% lower than actual resting EE. Participants significantly underestimated EI at lunch on both the exercise and rest days by 43% and 44%, respectively. Participants with high restraint were significantly better at estimating EE on the exercise day, and better at estimating EI on the rest day. Mood, perceived hunger, and solid vs. liquid carbohydrate intake were not influenced by dietary restraint, weight, or dieting status. In conclusion, a single bout of moderate-intensity exercise did not influence PE-EI in sedentary males in reference to dietary restraint, weight, and dieting status. Results also suggested that among sedentary males, there is a general inability to accurately estimate calories for moderate-intensity physical activity and EI. Inaccurate estimates of EE and EI have the potential to influence how males manage their weight.
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN)N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)Nreaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He(e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties.
Resumo:
Latin America, a region rich in both energy resources and native heritage, faces a rising politico-social confrontation that has been growing for over two decades. While resources like oil and gas are exploited to enhance the state’s economic growth, indigenous groups feel threatened because the operations related to this exploitation are infringing on their homelands. Furthermore, they believe that the potential resource wealth found in these environmentally-sensitive regions is provoking an “intrusion” in their ancestral territory of either government agencies or corporations allowed by governmental decree. Indigenous groups, which have achieved greater political voice over the past decade, are protesting against government violations. These protests have reached the media and received international attention, leading the discourse on topics such as civil and human rights violations. When this happens, the State finds itself “between a rock and a hard place”: In a debate between indigenous groups’ rights and economic sustainability.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
The parity violating weak decay of hyperons offers a valuable means of measuring their polarization, providing insight into the production of strange quarks and the matter they compose. Jefferson Lab's CLAS collaboration has utilized this property of hyperons, publishing the most precise polarization measurements for the Λ and Σ in both photoproduction and electroproduction to date. In contrast, cascades, which contain two strange quarks, can only be produced through indirect processes and as a result, exhibit low cross sections thus remaining experimentally elusive.^ At present, there are two aspects in cascade physics where progress has been minimal: characterizing their production mechanism, which lacks theoretical and experimental developments, and observation of the numerous excited cascade resonances that are required to exist by flavor SU(3) F symmetry. However, CLAS data were collected in 2008 with a luminosity of 68 pb−1 using a circularly polarized photon beam with energies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present, the world's largest for meson photoproduction in its energy range and provides a unique opportunity to study cascade physics with polarization measurements.^ The current analysis explores hyperon production through the γ p → K+K +Ξ− reaction by providing the first ever determination of spin observables P, Cx and Cz for the cascade. Three of our primary goals are to test the only cascade photoproduction model in existence, examine the underlying processes that give rise to hyperon polarization, and to stimulate future theoretical developments while providing constraints for their parameters. Our research is part of a broader program to understand the production of strange quarks and hadrons with strangeness. The remainder of this document discusses the motivation behind such research, the method of data collection, details of their analysis, and the significance of our results.^
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.