7 resultados para Heavy metal distribution
em Digital Commons at Florida International University
Resumo:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ∼7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.
Resumo:
Antibiotic resistance has become an important area of research because of the excessive use of antibiotics in clinical and agricultural settings that are driving the evolution of antibiotic resistant bacteria. However, drug tolerance is a naturally occurring phenomenon in soil communities, and is often linked to those soils that are exposed to heavy metals as well as antibiotics. Resistance to antibiotics maybe coupled with resistance to heavy metals in soil bacteria through efflux pumps that can be regulated by iron. Although considered s a heavy metal, iron is an essential component of life that regulates gene expression through the Ferric Uptake Regulator (Fur) protein. This master regulator protein is known to control siderophore production, and other biological pathways. As a suspected controller of biofilm formation, the role of Fur in environmental antibiotic resistance may be greater than is currently realized. In this study, we sought to explore a potential Fur-regulated drug tolerance pathway by understanding the response of soil bacteria when stressed with oxytetracycline and iron. Bacteria were collected from two locations in Miami Dade County. Isolates were first tested using Kirby-Bauer Disk Diffusion tests for antibiotic resistance/susceptibility and identified by 16S rDNA sequencing. A 96-well growth assay was developed to measure planktonic cell growth with 3 mM FeCl3, Oxytetracycline HCl, and the combination treatments. A Microtiter Dish Biofilm Formation Assay was employed and Fur diversity was evaluated. Tetracycline-susceptible bacterial isolates developed drug resistance with iron supplementation, but iron did not enhance biofilm formation. Development of a Fur-dependent drug resistance may be selected for, but further study is required to evaluate Fur evolution in the studied isolates. Gene expression analysis is also needed to further understand the ecological role of Fur and antibiotic resistance.
Resumo:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ~7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.
Resumo:
The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Theoretical research and specific surface area analysis of nitrogen adsorption indicated that a lot of structural micropores exist in sepiolite minerals fibers. However, the microporous size, existing form, and the distribution relationship between microporous structures were not proved yet. In this paper, the section TEM samples of nanofibers were prepared on the basis of the metal embedding and cutting technique, and the inner structure of sepiolite nanofibers was observed by TEM. The results showed that sepiolite fibers have multiplayer structure similar to concentric circles, and many micropores with the size of about 2–5 nm are normal and parallel to the -axis. The reason for the previously mentioned phenomenon was explained by using BET analysis and X-ray diffraction analysis results.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.