4 resultados para Heat Stress
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to examine the effects of a cooling vest on core body temperature following active dehydration and hyperthermia induced by exercising in a hot, humid environment. Based on our study, we recommend the ClimaTech HeatShieldTM only when athletes present with mild symptoms of heat exhaustion.
Resumo:
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coralAcropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.
Resumo:
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.
Resumo:
The demise of reef-building corals potentially lies on the horizon, given ongoing climate change amid other anthropogenic environmental stressors. If corals cannot acclimatize or adapt to changing conditions, dramatic declines in the extent and health of the living reefs are expected within the next half century. The primary and proximal global threat to corals is climate change. Reef-building corals are dependent upon a nutritional symbiosis with photosynthetic dinoflagellates belonging to the group Symbiodinium. . The symbiosis between the cnidarian host and algal partner is a stress-sensitive relationship; temperatures just 1°C above normal thermal maxima can result in the breakdown of the symbiosis, resulting in coral bleaching (the loss of Symbiodinium and/or associated photopigments) and ultimately, colony death. As ocean temperatures continue to rise, corals will either acclimatize or adapt to changing conditions, or will perish. By experimentally preconditioning the coral Acropora millepora via sublethal heat treatment, the coral acquired thermal tolerance, resisting bleaching during subsequent hyperthermal stress. The complex nature of the coral holobiont translates to multiple possible explanations for acclimatization: acquired thermal tolerance could potentially originate from the host itself, the Symbiodinium, or from the bacterial community associated with the coral. By examining the type of in hospite Symbiodinium and the bacterial community prior acclimation and after thermal challenge, it is shown that short-term acclimatization is not due to a distinct change in the dinoflagellate or prokaryote community. Though the microbial partnerships remain without considerable flux in preconditioned corals, the host transcriptome is dynamic. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments, showing a modulated transcriptomic response to stress. Additionally several genes were upregulated in association with thermal tolerance, including antiapoptotic genes, lectins, and oxidative stress response genes. Upstream of two of these thermal tolerance genes, inhibitor of NFκB and mannose-binding lectin, DNA polymorphisms were identified which vary significantly between the northern and southern Great Barrier Reef. The impact of these mutations in putative promoter regions remains to be seen, but variation across thermally-disparate geography serves to generate hypotheses regarding the role of regulatory element evolution in a coral adaptation context.