14 resultados para Harvest season
em Digital Commons at Florida International University
Resumo:
Airborne particulate matter (PM) is of environmental concern not only in urban but also rural areas that are easily inhalable and have been considered responsible, together with gaseous pollutants, for possible health effects. The objectives of this research study is to generate an extensive data set for ambient PM collected at Belle Glade and Delray Beach that ultimately was used together with published source profiles to predict the contributions of major sources to the overall airborne particle burden in Belle Glade and Delray Beach. ^ The size segregated particle sampling was conducted for one entire year. The samples collected during the months of January and May were further subjected to chemical analysis for organic compounds by Gas Chromatography-Mass Spectrometry. Additional, PM10 sampling was conducted simultaneously with size segregated particle sampling during January and May to analyze for trace elements using Instrumental Neutron Activation Analysis technique. Elements and organic marker compounds were used in Chemical Mass Balance modeling to determine the major source contribution to the ambient fine particle matter burden. ^ Size segregated particle distribution results show bimodal in both sampling sites. Sugarcane pre-harvest burning in the rural site elevated PM10 concentration by about 30% during the sugarcane harvest season compared to sugarcane growing season. Sea salt particles and Saharan dust particles accounted for the external sources. ^ The results of trace element analysis show that Al, Ca, Cs, Eu, Lu, Nd, Sc, Sm, Th, and Yb are more abundant at the rural sampling site. The trace elements Ba, Br, Ce, Cl, Cr, Fe, Gd, Hf, Na, Sb, Ta, V, and W show high abundance at the urban site due to anthropogenic activities except for Na and Cl, which are from sea salt spray. On the other hand, size segregated trace organic compounds measurements show that organic compounds mainly from combustion process were accumulated in PM0.95. ^ In conclusion, major particle sources were determined by the CMB8.2 software as follows: road dust, sugarcane leaf burning, diesel-powered and gasoline powered vehicle exhaust, leaf surface abrasion particles, and a very small fraction of meat cooking. ^
Resumo:
Bark extracts of the African cherry (Prunus africana) are used to treat benign prostatic hyperplasia. This study examined the effects of commercial bark harvest on population dynamics in the Kilum-Ijim Forest Preserve on Mount Oku, Cameroon and on traditional uses. P. africana is valued for its timber and as fuel although its greatest value is as a traditional medicine for human and animal ailments. Harvest has depleted the resource and has eroded traditional forest protection practices. I constructed matrix models to examine the effects of bark harvest on population structure and on population dynamics in harvested and unharvested populations. Harvesting simulations examined the effect on the population growth rate (λ) with differing levels of mortality of harvest-sized and large trees and differing harvest frequencies. Size class frequencies for the entire forest decreased in a reverse j-shaped curve, indicating adequate recruitment in the absence of harvest. Individual plots showed differences from the overall forest data, suggesting effects of natural and man-made perturbations, particularly due to bark harvest. One plot (harvested in the 1980s) showed a temporal difference in λ and fluctuated around one, due to alternating high and low fruiting years; other unharvested plots showed smaller temporal differences. Harvested plots (harvested illegally in 1997) had values of λ less than one and showed small temporal differences. The control plot also showed λ less than one, due to poor recruitment in the closed canopy forest. The value of λ for the combined data was 0.9931 suggesting a slightly declining population. The elasticity matrix for the combined data indicated the population growth rate was most sensitive to the survival of the large reproductive trees (42.5% of the elasticity). In perturbation analyses, reducing the survival of the large trees caused the largest reductions in λ. Simulations involving harvesting frequency indicated λ returns to pre-harvest conditions if trees are re-harvested after 10–15 years, but only if the large trees are left unharvested. Management scenarios suggest harvest can be sustainable if seedlings and small saplings are planted in the forest and actively managed, although large-scale plantations may be the only feasible option to meet market demand. ^
Resumo:
This study investigated how harvest and water management affected the ecology of the Pig Frog, Rana grylio. It also examined how mercury levels in leg muscle tissue vary spatially across the Everglades. Rana grylio is an intermediate link in the Everglades food web. Although common, this inconspicuous species can be affected by three forms of anthropogenic disturbance: harvest, water management and mercury contamination. This frog is harvested both commercially and recreationally for its legs, is aquatic and thus may be susceptible to water management practices, and can transfer mercury throughout the Everglades food web. ^ This two-year study took place in three major regions: Everglades National Park (ENP), Water Conservation Areas 3A (A), and Water Conservation Area 3B (B). The study categorized the three sites by their relative harvest level and hydroperiod. During the spring of 2001, areas of the Everglades dried completely. On a regional and local scale Pig Frog abundance was highest in Site A, the longest hydroperiod, heavily harvested site, followed by ENP and B. More frogs were found along survey transects and in capture-recapture plots before the dry-down than after the dry-down in Sites ENP and B. Individual growth patterns were similar across all sites, suggesting differences in body size may be due to selective harvest. Frogs from Site A, the flooded and harvested site, had no differences in survival rates between adults and juveniles. Site B populations shifted from a juvenile to adult dominated population after the dry-down. Dry-downs appeared to affect survival rates more than harvest. ^ Total mercury in frog leg tissue was highest in protected areas of Everglades National Park with a maximum concentration of 2.3 mg/kg wet mass where harvesting is prohibited. Similar spatial patterns in mercury levels were found among pig frogs and other wildlife throughout parts of the Everglades. Pig Frogs may be transferring substantial levels of mercury to other wildlife species in ENP. ^ In summary, although it was found that abundance and survival were reduced by dry-down, lack of adult size classes in Site A, suggest harvest also plays a role in regulating population structure. ^
Resumo:
Lepidocaryum tenue Mart. (Arecaceae) is a small, understory palm of terra firme forests of the western and central Amazon basin. Known as irapai, it is used for roof thatch by Amazonian peoples who collect its leaves from the wild and generate income from its fronds and articles fabricated from them. Increasing demand has caused local concern that populations are declining. Cultivation attempts have been unsuccessful. The purpose of this study was to investigate market conditions and quantify population dynamics and demographic responses of harvested and unharvested irapai growing near Iquitos, Peru. ^ Ethnobotanical research included participant surveys to determine movement of thatch tiles, called crisnejas, through Moronacocha Port. I also conducted a seed germination trial, and for four years studied five populations growing in communities with similar topography and soils but different land tenure and management strategies. Stage, survival, leaf production, and reproductive transitions were used to calculate ramet demographic rates and develop population projection matrices. ^ Weavers made an average of 20–30 crisnejas per day (90–130 leaves each), and earned US$0.09 to 0.70 each (US$1.80 to 21.00 per day). Average crisnejas per month sold per vendor was 2,955 with a profit range of US$0.05 to 0.32 per crisneja. Wholesalers worked with capital outlay from US$100 to 400, and an estimated ten to twenty vendors could be found at a given time. Consumers paid between US$0.23 to 1.20 per crisneja. Although differences in demographic rates by location existed, most were not significant enough to attribute to management. ^ After 60 months, mean seed germination rate was 19.5% in all media (37.9% in peat). Seedling survival was less than two percent after twelve months. Annual palm mortality was three percent, and occurred disproportionately in small (<50 cm) palms. Small palms grew more in height. Unharvested palms grew less than harvested palms. Large palms (≥50 cm) produced more leaves, were more likely to reproduce, and collectors harvested them more frequently. Reproductive potentials (sexual and asexual) were low. Population growth rates were greater than or not significantly different from 1.0, indicating populations maintained or increased in size. Current levels of irapai harvest appear sustainable. DNA analysis of stems and recruits is recommended to understand population composition and stage-specific asexual fecundity. ^
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
A pivotal component of hydrological restoration of the Florida Everglades is the improvement of water conveyance to Everglades National Park by the degradation of the current network of canals, roadways and levees. The Tamiami Trail (L29) road/canal complex represents a major barrier to natural water flows into the park and a variety of modification options for flow improvement are currently being explored, including the installation of spreader swales immediately downstream of culverts conveying water under Tamiami Trail from the L29 canal into Everglades National Park. In this study, we evaluated water column chemistry and wet-season diatom community structure to provide baseline information for use in future monitoring activities related to the proposed Tamiami Trail modifications. Water chemistry showed pronounced fluctuations in response to precipitation and anthropogenically mediated hydrological events. Differences in water quality variables among sites were dampened during periods of inundation, and became more pronounced during periods of low canal stage, suggesting the importance of small-scale mechanisms related to isolation of habitat patches. Diatom assemblages were unexpectedly speciose (127 taxa in 40 samples) compared to typical Everglades assemblages, and spatially heterogeneous in sites associated with concentric areas of dense vegetation immediately downstream of culverts. We also observed significant compositional dissimilarities among transects, indicating that culvert pool and north transect assemblages were substantially influenced by propagule input from the canal and areas to the north, while south transect sites were compositionally similar to typical sawgrass prairie diatom communities. Central transect sites were compositionally intermediate to their north and south counterparts. We propose that the position and spatial extent of this “transitional assemblage” is a sensitive indicator of subtle environmental change related to Tamiami Trail modifications.
Resumo:
Climate change in the Arctic is predicted to increase plant productivity through decomposition-related enhanced nutrient availability. However, the extent of the increase will depend on whether the increased nutrient availability can be sustained. To address this uncertainty, I assessed the response of plant tissue nutrients, litter decomposition rates, and soil nutrient availability to experimental climate warming manipulations, extended growing season and soil warming, over a 7 year period. Overall, the most consistent effect was the year-to-year variability in measured parameters, probably a result of large differences in weather and time of snowmelt. The results of this study emphasize that although plants of arctic environments are specifically adapted to low nutrient availability, they also posses a suite of traits that help to reduce nutrient losses such as slow growth, low tissue concentrations, and low tissue turnover that result in subtle responses to environmental changes.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1267/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1268/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1270/thumbnail.jpg
Resumo:
The cold season in the Arctic extends over eight to nine months during which ecosystem gas exchange and water balance of arctic plants have been largely unexplored. The overall objective of this thesis was to examine two critical gaps in our knowledge about tundra cold season processes – ecosystem respiration at very low temperatures and water uptake during the winter-spring transition. I determined the temperature response of ecosystem respiration of tundra monoliths down to temperatures as low as can be expected under snow-covered conditions (-15 °C). Temperature responses fit the Arrhenius function well with Q10 values over the range of -15 to 15 °C varying from 6.1 to 4.8. I used deuterium-enriched water (2H2O) as a tracer to evaluate water uptake of evergreen plants at snowmelt when soils are largely frozen. The results revealed that evergreen plants take up water under snow cover, possibly via roots but undoubtedly by foliar uptake.