4 resultados para Harmful cyanobacteria

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are photosynthetic prokaryotes that can be found in freshwater and marine environments as well as in soil. These organisms produce a variety of different biologically active compounds exhibiting anti-bacterial, anti-fungal and anti-cancer properties among others. In this study, cyanobacterial isolates were screened for their ability to produce extracellular antibacterial products. Cyanobacteria were isolated from fresh water and soil samples collected in the Pembroke Pines, FL area. Twenty- seven strains of cyanobacteria were isolated belonging to the following genera: Limnothrix, Nostoc, Fischerella, Anabaena, Pseudoanabaena, Lyngbya, Leptolyngbya, Tychonema, and Calothrix. Individual strains were grown in liquid culture in laboratory conditions. Following 14-day cultivation, the culture liquid was filtered and tested for activity against the following bacteria: Escherichia coli, Bacillus megatarium, Staphylococcus aureus, and Micrococcus luteus. Among all genera of cyanobacterial strains tested, Fischerella exhibited the greatest inhibitory activity. An attempt was made to isolate the active compound from the culture liquid of the active strains. Lipophilic extracts from culture liquid were obtained from three selected Fischerella strains. The extracts proved to have varying levels of activity against the tested bacteria. Inhibitory activity from all three Fischerella strains was detected against B. megatarium and M luteus. The only strain that was active against S. aureus was Fischerella sp. 114-12 while none of the extracts showed activity against E. coli. This kind of screening has potential pharmaceutical and agricultural benefits, including possible discovery of novel antibiotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria (blue-green algae) produce a diverse array of toxic or otherwise bioactive metabolites. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae, including mosquitoes. Compounds derived from cyanobacteria collected from the Florida Everglades and other Florida waterways were investigated as insecticides against the mosquito Aedes aegypti, a vector of dengue and yellow fever. Screening of cyanobacterial biomass revealed several strains that exhibited mosquito larvicidal activity. Guided via bioassay guided fractionation, a non-polar compound from Leptolyngbya sp. 21-9-3 was found to be the most active component. Characterization revealed the prospective compound to be a monounsaturated fatty acid with the molecular formula C16H30O2. This is the first evidence of mosquito larvicidal activity for this particular fatty acid. With larvicidal becoming more prevalent, fatty acids should be explored for future mosquito control strategies.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of harmful algal blooms (HAB) is a growing concern in aquatic environments. Among HAB organisms, cyanobacteria are of special concern because they have been reported worldwide to cause environmental and human health problem through contamination of drinking water. Although several analytical approaches have been applied to monitoring cyanobacteria toxins, conventional methods are costly and time-consuming so that analyses take weeks for field sampling and subsequent lab analysis. Capillary electrophoresis (CE) becomes a particularly suitable analytical separation method that can couple very small samples and rapid separations to a wide range of selective and sensitive detection techniques. This paper demonstrates a method for rapid separation and identification of four microcystin variants commonly found in aquatic environments. CE coupled to UV and electrospray ionization time-of-flight mass spectrometry (ESI-TOF) procedures were developed. All four analytes were separated within 6 minutes. The ESI-TOF experiment provides accurate molecular information, which further identifies analytes.