3 resultados para HIGHLY ENRICHED URANIUM

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wolbachia pipientis are bacterial endosymbionts of arthropods and in some filarial nematodes. Wolbachia are of particular interest because nematodeWolbachia have been shown to cause the diseases African river blindness and Lymphatic Filariasis. Doxycycline can be used to eliminate nematode Wolbachia, however, more efficient treatments are needed. Ideally, we would like to repurpose another FDA approved drug that helps to shorten treatment duration. Vitamins are one of the best classes of FDA approved compounds, generally recognized as safe. Interestingly, prior work by Serbus and colleagues found that dietary yeast, which is highly enriched in vitamins, dramatically reducesWolbachia titer in Drosophila melanogaster ovarian tissue. Imaging data indicated that the Wolbachia nucleoids were disrupted in response to yeast. This raised the possibility that yeast cells contain a bio-reactive, anti-Wolbachiacompound. Our close examination of yeast nutritional information identified which vitamins are most highly enriched in yeast. We then administered several of these to D. melanogaster, and saw that two of these led to reduced ovarianWolbachia titers, analogous to yeast-fed flies. This was especially interesting, as both vitamins are critical for functioning of the same biochemical pathway. We used retested effect of one of these vitamins in oogenesis by performing a dilution series, and achieved positive correlation from this dilution series. This opens up the avenue for clarifying the mechanism of how vitamins suppressWolbachia titer, and for testing enhancement of Doxycycline, to hopefully provide faster, more affordable treatment for millions of patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wolbachia pipientis are bacterial endosymbionts of arthropods and in some filarial nematodes. Wolbachia are of particular interest because nematodeWolbachia have been shown to cause the diseases African river blindness and Lymphatic Filariasis. Doxycycline can be used to eliminate nematode Wolbachia, however, more efficient treatments are needed. Ideally, we would like to repurpose another FDA approved drug that helps to shorten treatment duration. Vitamins are one of the best classes of FDA approved compounds, generally recognized as safe. Interestingly, prior work by Serbus and colleagues found that dietary yeast, which is highly enriched in vitamins, dramatically reducesWolbachia titer in Drosophila melanogaster ovarian tissue. Imaging data indicated that the Wolbachia nucleoids were disrupted in response to yeast. This raised the possibility that yeast cells contain a bio-reactive, anti-Wolbachiacompound. Our close examination of yeast nutritional information identified which vitamins are most highly enriched in yeast. We then administered several of these to D. melanogaster, and saw that two of these led to reduced ovarianWolbachia titers, analogous to yeast-fed flies. This was especially interesting, as both vitamins are critical for functioning of the same biochemical pathway. We used retested effect of one of these vitamins in oogenesis by performing a dilution series, and achieved positive correlation from this dilution series. This opens up the avenue for clarifying the mechanism of how vitamins suppressWolbachia titer, and for testing enhancement of Doxycycline, to hopefully provide faster, more affordable treatment for millions of patients.