2 resultados para HELIOTHIS-VIRESCENS LEPIDOPTERA
em Digital Commons at Florida International University
Resumo:
I investigated the phenology and breeding systems of two Florida endemic pawpaws, Asimina reticulata, widespread in peninsular Florida, and A. tetramera, a federally endangered species limited to two counties on the Atlantic Coastal Ridge. The purpose of this study was to determine if differences contribute to the rarity of Asimina tetramera compared with A. reticulata. The study was conducted in sand pine scrub sites with the largest populations of A. tetramera in the two counties. Flowering seasons differ for the two species. Both species are hermaphroditic and strongly protogynous. Pollination experiments show that neither species is autogamous and the primary breeding mechanism is outcrossing, although low levels of geitonogamous pollination occur in mature scrub habitats. High levels of inbreeding depression were noted in both species at both sites but inbreeding depression was relaxed the first year post-fire. Fruit set in mature habitats may be pollinator limited. ^ I studied insects associated with the flowers in sand pine scrub habitat in southeastern Florida from 1994–1996. The most commonly represented orders were Coleoptera (25 spp.), Lepidoptera. (3 spp.) and Hymenoptera. (3 spp.). All Coleoptera. were flower visitors; one species, Euphoria sepulchralis (Fabricius)(Scarabeaidae), visited flowers of the two Asimina species at both sites. Eurytides marcellus (Cramer) (Lepidoptera: Papilionidae) eggs and larvae were observed on both species of Asimina during each year of the study. ^ Resource management techniques were applied to a mature sand pine scrub community in Jonathan Dickinson State Park in southeastern Florida for the management of Asimina tetramera. Manipulations conducted in 1996 included combinations of fire and mechanical treatments. I measured effects of these treatments on flowering and fruit set on A. tetramera and found cutting and burning was most effective in increasing flowering, followed by burning. Mechanical cutting and mulching had no significant effect. ^
Resumo:
Communication signals are shaped by the opposing selection pressures imposed by predators and mates. A dynamic signal might serve as an adaptive compromise between an inconspicuous signal that evades predators and an extravagant signal preferred by females. Such a signal has been described in the gymnotiform electric fish, Brachyhypopomus gauderio, which produces a sexually dimorphic electric organ discharge (EOD). The EOD varies on a circadian rhythm and in response to social cues. This signal plasticity is mediated by the slow action of androgens and rapid action of melanocortins. My dissertation research tested the hypotheses that (1) signal plasticity is related to sociality levels in gymnotiform species, and (2) differences in signal plasticity are regulated by differential sensitivity to androgen and melanocortin hormones. To assess the breadth of dynamic signaling within the order Gymnotiformes, I sampled 13 species from the five gymnotiform families. I recorded EODs to observe spontaneous signal oscillations after which I injected melanocortin hormones, saline control, or presented the fish with a conspecific. I showed that through the co-option of the ancient melanocortin pathway, gymnotiforms dynamically regulate EOD amplitude, spectral frequency, both, or neither. To investigate whether observed EOD plasticities are related to species-specific sociality I tested four species; two territorial, highly aggressive species, Gymnotus carapo and Apteronotus leptorhynchus, a highly gregarious species, Eigenmannia cf. virescens , and an intermediate short-lived species with a fluid social system, Brachyhypopomus gauderio. I examined the relationship between the androgens testosterone and 11-ketotestosterone, the melanocortin α-MSH, and their roles in regulating EOD waveform. I implanted all fish with androgen and blank silicone implants, and injected with α-MSH before and at the peak of implant effect. I found that waveforms of the most territorial and aggressive species were insensitive to hormone treatments; maintaining a static, stereotyped signal that preserves encoding of individual identity. Species with a fluid social system were most responsive to hormone treatments, exhibiting signals that reflect immediate condition and reproductive state. In conclusion, variation in gymnotiform signal plasticity is hormonally regulated and seems to reflect species-specific sociality.