10 resultados para Graph databases

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity—users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data. The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user’s information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large read-only or read-write transactions with a large read set and a small write set constitute an important class of transactions used in such applications as data mining, data warehousing, statistical applications, and report generators. Such transactions are best supported with optimistic concurrency, because locking of large amounts of data for extended periods of time is not an acceptable solution. The abort rate in regular optimistic concurrency algorithms increases exponentially with the size of the transaction. The algorithm proposed in this dissertation solves this problem by using a new transaction scheduling technique that allows a large transaction to commit safely with significantly greater probability that can exceed several orders of magnitude versus regular optimistic concurrency algorithms. A performance simulation study and a formal proof of serializability and external consistency of the proposed algorithm are also presented.^ This dissertation also proposes a new query optimization technique (lazy queries). Lazy Queries is an adaptive query execution scheme which optimizes itself as the query runs. Lazy queries can be used to find an intersection of sub-queries in a very efficient way, which does not require full execution of large sub-queries nor does it require any statistical knowledge about the data.^ An efficient optimistic concurrency control algorithm used in a massively parallel B-tree with variable-length keys is introduced. B-trees with variable-length keys can be effectively used in a variety of database types. In particular, we show how such a B-tree was used in our implementation of a semantic object-oriented DBMS. The concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict detection. This algorithm ensures serializability and external consistency by using logical clocks and backward validation of transactional queries. A formal proof of correctness of the proposed algorithm is also presented. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current technology permits connecting local networks via high-bandwidth telephone lines. Central coordinator nodes may use Intelligent Networks to manage data flow over dialed data lines, e.g. ISDN, and to establish connections between LANs. This dissertation focuses on cost minimization and on establishing operational policies for query distribution over heterogeneous, geographically distributed databases. Based on our study of query distribution strategies, public network tariff policies, and database interface standards we propose methods for communication cost estimation, strategies for the reduction of bandwidth allocation, and guidelines for central to node communication protocols. Our conclusion is that dialed data lines offer a cost effective alternative for the implementation of distributed database query systems, and that existing commercial software may be adapted to support query processing in heterogeneous distributed database systems. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. Methods: In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch’s t statistic to extract conserved ESR motifs. Results: The most frequent 100% conserved word of length 5 bp in different insect exons was “ATGGA”. We identified 799 statistically significant “spike” hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Conclusions: Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs. We found that approximately half of the putative ESRs in common between insects and mammals have a high statistical support (p < 0.01). Several Drosophila genes with spatiotemporal expression patterns were identified to contain putative ESRs located in one exon of the ME exon pairs but not in the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this paper deals with an extension of Dirac's Theorem to directed graphs. It is related to a result often referred to as the Ghouila-Houri Theorem. Here we show that the requirement of being strongly connected in the hypothesis of the Ghouila-Houri Theorem is redundant. The Second part of the paper shows that a condition on the number of edges for a graph to be hamiltonian implies Ore's condition on the degrees of the vertices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding pathways of neurological disorders requires extensive research on both functional and structural characteristics of the brain. This dissertation introduced two interrelated research endeavors, describing (1) a novel integrated approach for constructing functional connectivity networks (FCNs) of brain using non-invasive scalp EEG recordings; and (2) a decision aid for estimating intracranial volume (ICV). The approach in (1) was developed to study the alterations of networks in patients with pediatric epilepsy. Results demonstrated the existence of statistically significant (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient’s extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.