4 resultados para Gold Coast Region

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salinity, water temperature, and chlorophyll a (chl-a) biomass were used as performance measures in the period 1999–2001 to evaluate the effect of a hydrological rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM)–Pajarales lagoon complex, Colombia where freshwater diversions were initiated in 1995 and completed in 1998. The objective of this study was to evaluate how diversions of freshwater into previously hypersaline (>80) environments changed the spatial and temporal distribution of environmental characteristics. Following the diversion, 19 surveys and transects using a flow-through system were surveyed in the CGSM–Pajarales complex to continuously measure selected water quality parameters. Geostatistical analysis indicates that hydrology and salinity regimes and water circulation patterns in the CGSM lagoon are largely controlled by freshwater discharge from the Fundacion, Aracataca, and Sevilla Rivers. Residence times in the CGSM lagoon were similar before (15.5 ± 3.8 days) and after (14.2 ± 2.0 days) the rehabilitation project and indicated that the system is flushed regularly. In contrast, chl-a biomass was highly variable in the CGSM–Pajarales lagoon complex and not related to discharge patterns. Mean annual chl-a biomass (44–250 μg L−1) following the diversion project was similar to values recorded since the 1980s and still remains among the highest reported in coastal systems around the world owing to its unique hydrology regulated by the Magdalena River and Sierra Nevada de Santa Marta watersheds and the high teleconnection to the El Niño Southern Oscillation (ENSO). Our results confirm that the reduction in salinity in the CGSM lagoon and Pajarales complex during 1999–2000 was largely driven by high precipitation (2500 mm) induced by the ENSO–La Niña rather than by the freshwater diversions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracalanus quasimodo and Temora turbinata are two calanoid copepods prominent in the planktonic communities of the southeastern United States. Despite their prominence, the species and population level structure of these copepods is yet unexplored. The phylogeographic, temporal and phylogenetic structure of P. quasimodo and T. turbinata are examined in my study. Samples were collected from ten sites along the Gulf of Mexico and Florida peninsular coasts. Three sites were sampled quarterly for two years. Individuals were screened for unique ITS-1 sequences with denaturing gradient gel electrophoresis. Unique variants were sequenced at the nuclear ITS-1 and mitochondrial COI loci. Sampling sites were analyzed for pairwise community differences and for variances between geographic and temporal groupings. Genetic variants were analyzed for phylogenetic and coalescent topology. Paracalanus quasimodo is highly structured geographically with populations divided between the Gulf of Mexico, temperate Atlantic and subtropical Atlantic, in addition to isolation by distance. No significant differences were detected between the T. turbinata samples. Both P. quasimodo and T. turbinata are stable within sites over time and between sites within a sampling period, with two exceptions. The first was a pilot sample from Miami taken two years prior to the general sampling whose community showed significant differences from most of the other Miami samples. Paracalanus quasimodo had a positive correlation of Fst with time. The second was high temporal variability detected in the samples from Fort Pierce. Phylogenetically, both P. quasimodo and T. turbinata were in well supported, congeneric clades. Paracalanus quasimodo was not monophyletic, divided into two well-supported clades. Temora turbinata variants were in one clade with insignificant support for topology within the clade and very little intraspecific variation. Paracalanus quasimodo and T. turbinata populations show opposite trends. Paracalanus quasimodo occurs near shore and shows population structure mediated by hydrological features and distance, both geographic and temporal. The phylogeny shows two deeply divergent clades suggestive of cryptic speciation. In contrast, T. turbinata populations range further offshore and show little geographic or temporal structure. However, the low genetic variation detected in this region suggests a recent bottleneck event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracalanus quasimodo and Temora turbinata are two calanoid copepods prominent in the planktonic communities of the southeastern United States. Despite their prominence, the species and population level structure of these copepods is yet unexplored. The phylogeographic, temporal and phylogenetic structure of P. quasimodo and T. turbinata are examined in my study. Samples were collected from ten sites along the Gulf of Mexico and Florida peninsular coasts. Three sites were sampled quarterly for two years. Individuals were screened for unique ITS-1 sequences with denaturing gradient gel electrophoresis. Unique variants were sequenced at the nuclear ITS-1 and mitochondrial COI loci. Sampling sites were analyzed for pairwise community differences and for variances between geographic and temporal groupings. Genetic variants were analyzed for phylogenetic and coalescent topology. Paracalanus quasimodo is highly structured geographically with populations divided between the Gulf of Mexico, temperate Atlantic and subtropical Atlantic, in addition to isolation by distance. No significant differences were detected between the T. turbinata samples. Both P. quasimodo and T. turbinata are stable within sites over time and between sites within a sampling period, with two exceptions. The first was a pilot sample from Miami taken two years prior to the general sampling whose community showed significant differences from most of the other Miami samples. Paracalanus quasimodo had a positive correlation of Fst with time. The second was high temporal variability detected in the samples from Fort Pierce. Phylogenetically, both P. quasimodo and T. turbinata were in well supported, congeneric clades. Paracalanus quasimodo was not monophyletic, divided into two well-supported clades. Temora turbinata variants were in one clade with insignificant support for topology within the clade and very little intraspecific variation. Paracalanus quasimodo and T. turbinata populations show opposite trends. Paracalanus quasimodo occurs near shore and shows population structure mediated by hydrological features and distance, both geographic and temporal. The phylogeny shows two deeply divergent clades suggestive of cryptic speciation. In contrast, T. turbinata populations range further offshore and show little geographic or temporal structure. However, the low genetic variation detected in this region suggests a recent bottleneck event.