2 resultados para Global energy governance in a multipolar world
em Digital Commons at Florida International University
Resumo:
Since Plato's Republic and Aristotle's Politics established the basis for Western political thought almost 2500 years ago, the discipline of international relations has evolved substantially. However, most of the literature revolves around state interaction within the system, and there is little discussion of countries that opt out of the international states system and become isolationist. Given the interdependent nature of the modern international system, this study elaborates on domestic and foreign isolationism by expounding upon the reasons and consequences of states opting out of the international system. The empirical case studies utilized to explore isolationism are Albania, North Korea, and Burma. By empirically verifying the components, motivations, and consequences of isolationism in an interdependent world, this study provides insight into why and how states resist engagement with the global socioeconomic and political state system. ^ Using historical, comparative, and inductive analysis, this study explains why states choose to isolate themselves both domestically and internationally. Specifically, comparative historical analysis highlights isolationism as a concept and practice. This study maintains that extreme forms of self-imposed isolation in an interdependent international system, while perhaps serving the immediate interests of a ruling regime, harms the long-term national interests of the state and the populace. Although the leadership in an isolationist state gains a significant amount of power and control over the people within its borders, the state as a whole experiences profound negative effects. In the long term, a state loses power, stability, prestige, and suffers a decline in overall economic prosperity. ^ States that withdraw from the international system, therefore, provide insight into an unexplored area of international relations when considering notions of rationality, self-interest, power politics, cooperation, and alliances. In short, isolationism in an interdependent state system goes against the logic of the modern society/system of states, resulting in deleterious consequences to the wellbeing of the state. ^
Resumo:
Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.