3 resultados para Global Positioning System
em Digital Commons at Florida International University
Resumo:
Around the world borders are militarized, states are stepping up repressive anti-immigrant controls, and native publics are turning immigrants into scapegoats for the spiraling crisis of global capitalism. The massive displacement and primitive accumulation unleashed by free trade agreements and neo-liberal policies, as well as state and “private” violence has resulted in a virtually inexhaustible immigrant labor reserve for the global economy. State controls over immigration and immigrant labor have several functions for the system: 1) state repression and criminalization of undocumented immigration make immigrants vulnerable and deportable and therefore subject to conditions of super-exploitation, super-control and hyper-surveillance; 2) anti-immigrant repressive apparatuses are themselves ever more important sources of accumulation, ranging from private for-profit immigrant detention centers, to the militarization of borders, and the purchase by states of military hardware and systems of surveillance. Immigrant labor is extremely profitable for the transnational corporate economy; 3) the anti-immigrant policies associated with repressive state apparatuses help turn attention away from the crisis of global capitalism among more privileged sectors of the working class and convert immigrant workers into scapegoats for the crisis, thus deflecting attention from the root causes of the crisis and undermining working class unity. This article focuses on structural and historical underpinnings of the phenomenon of immigrant labor in the new global capitalist system and on how the rise of a globally integrated production and financial system, a transnational capitalist class, and transnational state apparatuses, have led to a reorganization of the world market in labor, including deeper reliance on a rapidly expanding reserve army of immigrant labor and a vicious new anti-immigrant politics. It looks at the United States as an illustration of the larger worldwide situation with regard to immigration and immigrant justice. Finally, it explores the rise of an immigrant justice movement around the world, observes the leading role that immigrant workers often play in worker’s struggles and that a mass immigrant rights movement is at the cutting edge of the struggle against transnational corporate exploitation. We call for replacing the whole concept of national citizenship with that of global citizenship as the only rallying cry that can assure justice and equality for all.
Resumo:
This dissertation proposed a self-organizing medium access control protocol (MAC) for wireless sensor networks (WSNs). The proposed MAC protocol, space division multiple access (SDMA), relies on sensor node position information and provides sensor nodes access to the wireless channel based on their spatial locations. SDMA divides a geographical area into space divisions, where there is one-to-one map between the space divisions and the time slots. Therefore, the MAC protocol requirement is the sensor node information of its position and a prior knowledge of the one-to-one mapping function. The scheme is scalable, self-maintaining, and self-starting. It provides collision-free access to the wireless channel for the sensor nodes thereby, guarantees delay-bounded communication in real time for delay sensitive applications. This work was divided into two parts: the first part involved the design of the mapping function to map the space divisions to the time slots. The mapping function is based on a uniform Latin square. A Uniform Latin square of order k = m 2 is an k x k square matrix that consists of k symbols from 0 to k-1 such that no symbol appears more than once in any row, in any column, or in any m x in area of main subsquares. The uniqueness of each symbol in the main subsquares presents very attractive characteristic in applying a uniform Latin square to time slot allocation problem in WSNs. The second part of this research involved designing a GPS free positioning system for position information. The system is called time and power based localization scheme (TPLS). TPLS is based on time difference of arrival (TDoA) and received signal strength (RSS) using radio frequency and ultrasonic signals to measure and detect the range differences from a sensor node to three anchor nodes. TPLS requires low computation overhead and no time synchronization, as the location estimation algorithm involved only a simple algebraic operation.
Resumo:
The integration of automation (specifically Global Positioning Systems (GPS)) and Information and Communications Technology (ICT) through the creation of a Total Jobsite Management Tool (TJMT) in construction contractor companies can revolutionize the way contractors do business. The key to this integration is the collection and processing of real-time GPS data that is produced on the jobsite for use in project management applications. This research study established the need for an effective planning and implementation framework to assist construction contractor companies in navigating the terrain of GPS and ICT use. An Implementation Framework was developed using the Action Research approach. The framework consists of three components, as follows: (i) ICT Infrastructure Model, (ii) Organizational Restructuring Model, and (iii) Cost/Benefit Analysis. The conceptual ICT infrastructure model was developed for the purpose of showing decision makers within highway construction companies how to collect, process, and use GPS data for project management applications. The organizational restructuring model was developed to assist companies in the analysis and redesign of business processes, data flows, core job responsibilities, and their organizational structure in order to obtain the maximum benefit at the least cost in implementing GPS as a TJMT. A cost-benefit analysis which identifies and quantifies the cost and benefits (both direct and indirect) was performed in the study to clearly demonstrate the advantages of using GPS as a TJMT. Finally, the study revealed that in order to successfully implement a program to utilize GPS data as a TJMT, it is important for construction companies to understand the various implementation and transitioning issues that arise when implementing this new technology and business strategy. In the study, Factors for Success were identified and ranked to allow a construction company to understand the factors that may contribute to or detract from the prospect for success during implementation. The Implementation Framework developed as a result of this study will serve to guide highway construction companies in the successful integration of GPS and ICT technologies for use as a TJMT.