9 resultados para Glass fiber industry

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Implicit in current design practice of minimum uplift capacity, is the assumption that the connection's capacity is proportional to the number of fasteners per connection joint. This assumption may overestimate the capacity of joints by a factor of two or more and maybe the cause of connection failures in extreme wind events. The current research serves to modify the current practice by proposing a realistic relationship between the number of fasteners and the capacity of the joint. The research is also aimed at further development of non-intrusive continuous load path (CLP) connection system using Glass Fiber Reinforced Polymer (GFRP) and epoxy. Suitable designs were developed for stud to top plate and gable end connections and tests were performed to evaluate the ultimate load, creep and fatigue behavior. The objective was to determine the performance of the connections under simulated sustained hurricane conditions. The performance of the new connections was satisfactory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980’s. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) - Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This exploratory study expands on hospitality management literature, specifically on the influence of a supervisor’s gender in regards to employee job satisfaction within the casino-entertainment sector. Employee job satisfaction was analyzed using company, department, and supervisor variables based on 961 surveys. The study’s results suggest that employees with male supervisors have a higher employee satisfaction level than employees with supervisors that are female. Hospitality organizations are therefore encouraged to create leadership programs to ensure women are a part of corporate leadership’s success formula for the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lot of mixed vitrified waste exists at DOE sites, which contain valuable metal having great potential for being reused in industry. Of these useful metals, steel constitutes more than 45% of the volume. Using the differential centrifugal separation technology, steel is separated by using remote melting of the mixed waste. The high costs involved are directly proportional to the time involved in separation of the steel from the mixed waste. This is determined by using similitude principles. Having obtained a solidified steel ingot by melting, it is essential to determine the decontaminated portions of the ingot that can be released to industry. Two parameters representing measures of separation are proposed—the Centrifugal Fluid Separation Number and the Thermal Separation Number. Regression correlations are determined to express the estimated time of separation. Experimental analysis of solidified ingots has shown that when the Thermal Separation Number is less than 1700 the steel contains little or no trace of glass. This result can be used to recycle steel back to industry. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the introduction of fiber reinforced polymers (FRP) for the repair and retrofit of concrete structures in the 1980’s, considerable research has been devoted to the feasibility of their application and predictive modeling of their performance. However, the effects of flaws present in the constitutive components and the practices in substrate preparation and treatment have not yet been thoroughly studied. This research aims at investigating the effect of surface preparation and treatment for the pre-cured FRP systems and the groove size tolerance for near surface mounted (NSM) FRP systems; and to set thresholds for guaranteed system performance. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 10-59B to develop construction specifications and process control manual for repair and retrofit of concrete structures using bonded FRP systems. The research included both analytical and experimental components. The experimental program for the pre-cured FRP systems consisted of a total of twenty-four (24) reinforced concrete (RC) T-beams with various surface preparation parameters and surface flaws, including roughness, flatness, voids and cracks (cuts). For the NSM FRP systems, a total of twelve (12) additional RC T-beams were tested with different grooves sizes for FRP bars and strips. The analytical program included developing an elaborate nonlinear finite element model using the general purpose software ANSYS. The bond interface between FRP and concrete was modeled by a series of nonlinear springs. The model was validated against test data from the present study as well as those available from the literature. The model was subsequently used to extend the experimental range of parameters for surface flatness in pre-cured FRP systems and for groove size study in the NSM FRP systems. Test results, confirmed by further analyses, indicated that contrary to the general belief in the industry, the impact of surface roughness on the global performance of pre-cured FRP systems was negligible. The study also verified that threshold limits set for wet lay-up FRP systems can be extended to pre-cured systems. The study showed that larger surface voids and cracks (cuts) can adversely impact both the strength and ductility of pre-cured FRP systems. On the other hand, frequency (or spacing) of surface cracks (cuts) may only affect system ductility rather than its strength. Finally, within the range studied, groove size tolerance of ±1/8 in. does not appear to have an adverse effect on the performance of NSM FRP systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the introduction of fiber reinforced polymers (FRP) for the repair and retrofit of concrete structures in the 1980’s, considerable research has been devoted to the feasibility of their application and predictive modeling of their performance. However, the effects of flaws present in the constitutive components and the practices in substrate preparation and treatment have not yet been thoroughly studied. This research aims at investigating the effect of surface preparation and treatment for the pre-cured FRP systems and the groove size tolerance for near surface mounted (NSM) FRP systems; and to set thresholds for guaranteed system performance. The research included both analytical and experimental components. The experimental program for the pre-cured FRP systems consisted of a total of twenty-four (24) reinforced concrete (RC) T-beams with various surface preparation parameters and surface flaws, including roughness, flatness, voids and cracks (cuts). For the NSM FRP systems, a total of twelve (12) additional RC T-beams were tested with different grooves sizes for FRP bars and strips. The analytical program included developing an elaborate nonlinear finite element model using the general purpose software ANSYS. The model was subsequently used to extend the experimental range of parameters for surface flatness in pre-cured FRP systems, and for groove size study in the NSM FRP systems. Test results, confirmed by further analyses, indicated that contrary to the general belief in the industry, the impact of surface roughness on the global performance of pre-cured FRP systems was negligible. The study also verified that threshold limits set for wet lay-up FRP systems can be extended to pre-cured systems. The study showed that larger surface voids and cracks (cuts) can adversely impact both the strength and ductility of pre-cured FRP systems. On the other hand, frequency (or spacing) of surface cracks (cuts) may only affect system ductility rather than its strength. Finally, within the range studied, groove size tolerance of +1/8 in. does not appear to have an adverse effect on the performance of NSM FRP systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.