4 resultados para Geology, Geochemistry and Mineralogy.
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^
Resumo:
The Rio San Juan Complex is an important occurrence of high pressure/low temperature rocks in the circum-Caribbean region which contains both coherent blueschist units and two varieties of melange in the same area. The melanges contain a diverse assemblage of blocks of various sizes, different degrees of metamorphism, and mineral assemblages. Some high pressure blocks show two stages of metamorphism. The earliest stage is characterized by high pressure-low temperature conditions and the second stage is characterized by high pressure-lower temperature conditions. The geochemistry of thirteen samples from the Rio San Juan Complex has been studied and data have been compared with rocks of adjacent regions. Geochemical evidence indicates that rocks from the Rio San Juan Complex have predominant calc-alkaline affinities with subordinate tholeiitic affinities. This suggests that they have a multiple tectonic provenance.
Resumo:
A variety of world-class mineral deposits occur in Mesozoic and Tertiary rocks of the Guerrero terrane. New Pb isotope analyses of various crustal units and ores from distinct subterranes of the Guerrero terrane are presented to trace metal sources in these deposits and infer source reservoirs. New Sr and Nd isotope results are provided to gain insight into the provenance of the crustal rocks from the Guerrero terrane. Triassic schist samples from the Arteaga Complex and Triassic-Jurassic phyllite and slate samples from the Tejupilco metamorphic suite contain radiogenic Pb (206Pb/204Pb = 18.701–19.256) relative to bulk earth models. Cretaceous sedimentary rocks of the Zihuatanejo Sequence are more radiogenic (206Pb/204Pb = 18.763–19.437) than samples from the Huetamo Sequence (206Pb/204Pb = 18.630–18.998). Tertiary intrusive rocks from La Verde, Inguaran, La Esmeralda, and El Malacate plot to the right of the average Pb crust evolution curve of Stacey and Kramers (206Pb/204Pb = 18.705–19.033). Ores from the La Verde and La Esmeralda porphyry copper deposits yield isotopic ratios (206Pb/204Pb = 18.678–18.723) that are generally less radiogenic than the host igneous rocks, but plot within the field defined by the sedimentary rocks from the Huetamo Sequence. Tertiary intrusive rocks from the Zimapan and La Negra districts in the Sierra Madre terrane plot above and to the right of the Stacey-Kramers reference line (206Pb/204Pb = 18.804–18.972). Lead isotope ratios of ore minerals from the Zimapan and La Negra skarn mines ( 206Pb/204Pb = 18.775–18.975) resemble those of the associated igneous rocks, implying a magmatic Pb input in the skarn deposits. New Sr and Nd isotope data on metamorphic rocks (87Sr/ 86Sr = 0.707757–0.726494 and 143Nd/144 Nd = 0.512109–0.512653) suggest that the basement of the Guerrero terrane originated from sources that had been derived from an old cratonic area. The narrow ranges and generally low 87Sr/86Sr ratios (0.704860–0.705755) and 143Nd/144Nd values (0.512765–0.512772) above that of bulk earth for igneous rocks from Inguaran, El Malacate, and La Esmeralda suggest a relatively low degree of crustal contamination. However, the isotopic values for the La Verde site (87Sr/86Sr = 0.708784 and 143Nd/144Nd = 0.512640) may indicate the involvement of a more evolved crustal component.
Resumo:
A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.