3 resultados para Geographic Scale

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the exponential increasing demands and uses of GIS data visualization system, such as urban planning, environment and climate change monitoring, weather simulation, hydrographic gauge and so forth, the geospatial vector and raster data visualization research, application and technology has become prevalent. However, we observe that current web GIS techniques are merely suitable for static vector and raster data where no dynamic overlaying layers. While it is desirable to enable visual explorations of large-scale dynamic vector and raster geospatial data in a web environment, improving the performance between backend datasets and the vector and raster applications remains a challenging technical issue. This dissertation is to implement these challenging and unimplemented areas: how to provide a large-scale dynamic vector and raster data visualization service with dynamic overlaying layers accessible from various client devices through a standard web browser, and how to make the large-scale dynamic vector and raster data visualization service as rapid as the static one. To accomplish these, a large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling and a comprehensive performance improvement solution are proposed, designed and implemented. They include: the quadtree-based indexing and parallel map tiling, the Legend String, the vector data visualization with dynamic layers overlaying, the vector data time series visualization, the algorithm of vector data rendering, the algorithm of raster data re-projection, the algorithm for elimination of superfluous level of detail, the algorithm for vector data gridding and re-grouping and the cluster servers side vector and raster data caching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geographic Information Systems (GIS) is an emerging information technology (IT) which promises to have large scale influences in how spatially distributed resources are managed. It has had applications in the management of issues as diverse as recovering from the disaster of Hurricane Andrew to aiding military operations in Desert Storm. Implementation of GIS systems is an important issue because there are high cost and time involvement in setting them up. An important component of the implementation problem is the "meaning" different groups of people who are influencing the implementation give to the technology. The research was based on the theory of (theoretical stance to the problem was based on the) "Social Construction of Knowledge" systems which assumes knowledge systems are subject to sociological analysis both in usage and in content. An interpretive research approach was adopted to inductively derive a model which explains how the "meanings" of a GIS are socially constructed. The research design entailed a comparative case analysis over two county sites which were using the same GIS for a variety of purposes. A total of 75 in-depth interviews were conducted to elicit interpretations of GIS. Results indicate that differences in how geographers and data-processors view the technology lead to different implementation patterns in the two sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.