8 resultados para Genetic differentiation
em Digital Commons at Florida International University
Resumo:
Phylogenetic analyses were performed on six genera and 46 species of the Neotropical palm tribe Geonomeae. The analyses were based on two low copy nuclear DNA sequences from the genes encoding phosphoribulokinase and RNA polymerase II. The basal node of the tribe was polytomous. Pholidostachys formed a monophyletic group. The currently accepted genera Calyptronoma and Calyptrogyne formed a well-supported clade with Calyptronoma resolved as paraphyletic to Calyptrogyne. Geonoma formed a strongly supported monophyletic group consisting of two main clades. ^ An evaluation of the genetic distinctness between Geonoma macrostachys varieties at a local and regional scale using inter-simple sequence repeat (ISSR) markers was performed. Clustering, ordination, and AMOVA suggested a lack of genetic distinctness between varieties at the regional level. A hierarchical AMOVA revealed that the genetic diversity mainly lies among the four localities sampled. A significant genetic differentiation between sympatric varieties occurred in one locality only. The current taxonomy of G. macrostachys, which recognizes only one species, was therefore supported. ^ The preferred habitat of sympatric G. macrostachys varieties with respect to edaphic, topographic, and light factors in three Peruvian lowland forests was studied. The two varieties were mostly encountered in different physiographically defined habitats, with variety acaulis occurring more often in floodplain forest and variety macrostachys in the tierra firme. Comparison of means tests revealed that nine to eleven of the 16 environmental variables were significantly different between varieties. Edaphic factors, mainly soil texture and K content, were better contributors than light conditions to distinguish the habitats occupied by the two varieties in all three study sites. It is concluded that habitat differentiation plays a role in the coexistence of these closely related species taxa. ^
Resumo:
Gene flow, or the exchange of genes between populations, is important because it determines the evolutionary trajectory of a species, including the relative influences of genetic drift and natural selection in the process of population differentiation. Gene flow differs among species because of variation in dispersal capability and abundances across taxa, and historical forces related to geological or lineage history. Both history and ecology influence gene flow in potentially complicated ways, and accounting for their effects remains an important problem in evolutionary biology. This research is a comparative study of gene flow and life-history in a monophyletic group of stream fishes, the darters. As a first step in disentangling historical and ecological effects, I reconstructed the phylogenetic relationships of the study species from nucleotide sequences in the mtDNA control region. I then used this phylogeny and regional glaciation history to infer historical effects on life-history evolution and gene flow in 15 species of darters. Gene flow was estimated indirectly, using information from 20 resolvable and polymorphic allozyme loci. When I accounted for historical effects, comparisons across taxa revealed that gene flow rates were closely associated with differences in clutch sizes and reproductive investment patterns. I hypothesized that differences in larval dispersal among taxa explained this relationship. Results from a field study of larval drift were consistent with this hypothesis. Finally, I asked whether there was an interaction between species' ecology and genetic differentiation across biogeographically distinct regions. Information from allozymes and mtDNA sequences revealed that life history plays an important role in the magnitude of species divergence across biogeographic boundaries. These results suggested an important association between life histories and rates of speciation following an allopatric isolation event. This research, along with other studies from the literature, further illustrates the enormous potential of North American freshwater fishes as a system for studying speciation processes. ^
Resumo:
Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.
Resumo:
Gonadal development is an ideal model to study organogenesis because a variety of developmental processes can be studied during the differentiation of the bipotential primordium into testis or ovary. To better understand this process, Representational Difference Analysis of cDNA was used to identify genes that are differentially expressed in mouse gonads at 13.5 days post-coitus. The analysis led to the identification of three testis specific genes and a sequence that was only expressed in the ovary. The male genes identified: renin, Col9a3, and a novel gene termed tescalcin had patterns of expression that suggested a role in testis determination. ^ Studies of the tescalcin gene revealed that it is organized into eight exons and seven introns. The gene was located at 64 cM in mouse chromosome 5, where it spans approximately 35 Kb. Three mRNA variants resulting from alternative splicing of intron 5 were identified in mouse tissues. Gel mobility shift assays demonstrated that Sp1 and Sp3 from Y-1, msc-1, and MIN-6 cells nuclear extracts bind the GC-boxes within the tescalcin proximal promoter. Bisulfite sequencing analysis of tescalcin CpG island revealed that it is differentially methylated in male and female mouse embryonic gonads, and that hypermethylation of this region represses expression of tescalcin in the β-TC3 cell line. ^ The major tescalcin mRNA encodes a protein with 214 amino acids that contains a consensus EF-hand Ca2+-binding domain and an N-myristoylation motif. The amino acid sequence of tescalcin is highly conserved among various species, and it showed the highest homology with calcineurin B homologous proteins 1 and 2, and calcineurin B. Western blot analysis using antibodies generated against the tescalcin protein confirmed its presence in specific mouse tissues and cell lines. Immunohistochemical analysis of mouse embryos confirmed the pattern of expression of tescalcin mRNA in fetal testis. Using pull-down assays, glyceraidehydes-3-phosphate dehydrogenase was identified as an interacting and potential functional partner of tescalcin. ^ The identification and characterization of tescalcin as a novel embryonic testicular marker will contribute to the elucidation of the genetic pathways involved in testis development and likely to the understanding of pathological conditions such as sex reversal and infertility. ^
Resumo:
Dioon Lindl. (Zamiaceae) is a small genus restricted to Mexico (12 species) and Honduras (one species). Previous systematic studies have been unable to fully resolve species relationships within the genus. Phylogenetic analyses were conducted with data from several sources, including Restriction Fragment Length Polymorphisms from the chloroplast genome, morphology, two introns of the low copy nuclear gene S-adenosyl-L-homocysteine hydrolase (SAHH) and the 5.8S/ITS2 regions of the nuclear ribosomal DNA. The goals of the study were to construct a total evidence species level phylogeny and to explore current biogeographical hypotheses. None of the analyses performed produced a fully resolved topology. Dioon is comprised of two main lineages (the Edule and Spinulosum Clades), which represents an ancient divergence within the genus. The two introns of the nuclear gene SAHH offer additional evidence for the split into two lineages. Intron 2 contains a 18 bp deletion in the Spinulosum Clade, providing a synapomorphy for that group. The 5.8S/ITS2 regions were highly polymorphic and subsequently omitted from the combined analyses. In order to visualize congruence between morphology and molecular data, morphological characters were mapped onto the combined molecular tree. Current biogeographical hypotheses of a general northward pattern of migration and speciation are supported here. However, sister relationships within the Edule Clade are not fully resolved. Seven DNA microsatellite markers were developed to investigate patterns of genetic variation of seven populations of D. edule, a species restricted to Eastern Mexico. We found that most of the genetic variation lies within populations (Ho = 0.2166–0.3657) and that levels of population differentiation are low (Fst = 0.088); this finding is congruent with the breeding system of this species, dioicy. Four of the populations deviate from Hardy Weinberg Equilibrium and have a high number of identical genotypes, we suggest that this unexpected pattern is due to the life-history strategy of the species coupled with the few number of polymorphic loci detected in these populations. Our results are not congruent with earlier evidence from morphology and allozyme markers that suggest that the two northernmost populations represent a distinct entity that is recognized by some taxonomists as D. angustifolium.
Resumo:
The Caribbean genus Pseudophoenix (Arecaceae) has its center of taxonomic diversity in Hispaniola (Haiti and the Dominican Republic). Three species (P. ekmanii, P. lediniana, and P. vinifera) are restricted to this island. In this thesis I investigated the population genetic diversity and structure of Pseudophoenix using ten microsatellite loci. Results showed homozygote excess and high inbreeding coefficients in all populations across all polymorphic loci. Overall, there was high differentiation among populations. Results from the Bayesian and Neighbor Joining cluster analyses identified groups that were consistence with currently accepted species delimitation. We included the only known population of an undescribed morph from the Dominican Republic that has been suggested to represent a new species. Results from the cluster analyses suggested that this putative species is closely related to P. sargentii from Turk and Caicos. Our study provided insights pertinent to the conservation genetics and management of this genus in Hispaniola.
Resumo:
Rare plant conservation efforts must utilize current genetic methods to ensure the evolutionary potential of populations is preserved. One such effort involves the Key Tree Cactus, Pilosocereus robinii, which is an endangered columnar cactus native to the Florida Keys. The populations have precipitously declined over the past decade because of habitat loss and increasing soil salinity from rising sea levels and storm surge. Next-generation DNA sequencing was used to assess the genetic structure of the populations. Twenty individuals representative of both wild and extirpated cacti were chosen for Restriction Site Associated DNA (RAD) analysis. Samples processed using the HindIII and NotIII restriction enzymes produced 82,382,440 high quality reads used for genetic mapping, from which 5,265 Single Nucleotide Polymorphisms (SNPs) were discovered. The analysis revealed that the Keys’ populations are closely related with little population differentiation. In addition, the populations display evidence of inbreeding and low genetic diversity.