3 resultados para Genes, Immunoglobulin Heavy Chain
em Digital Commons at Florida International University
Resumo:
Juvenile hormone (JH) is the central hormonal regulator of life-history trade-offs in many insects. In Aedes aegypti, JH regulates reproductive development after emergence. Little is known about JH's physiological functions after reproductive development is complete or JH's role in mediating life-history trade-offs. By examining the effect of hormones, nutrition, and mating on ovarian physiology during the previtellogenic resting stage, critical roles were determined for these factors in mediating life-history trade-offs and reproductive output. The extent of follicular resorption during the previtellogenic resting stage is dependent on nutritional quality. Feeding females a low quality diet during the resting stage causes the rate of follicular resorption to increase and reproductive output to decrease. Conversely, feeding females a high quality diet causes resorption to remain low. The extent of resorption can be increased by separating the ovaries from a source of JH or decreased by exogenous application of methoprene. Active caspases were localized to resorbing follicles indicating that an apoptosis-like mechanism participates in follicular resorption. Accumulations of neutral lipids and the accumulation of mRNA's integral to endocytosis and oocyte development such as the vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) were also examined under various nutritional and hormonal conditions. The abundance of mRNA's and neutral lipid content increased within the previtellogenic ovary as mosquitoes were offered increasing sucrose concentrations or were treated with methoprene. These same nutritional and hormonal manipulations altered the extent of resorption after a blood meal indicating that the fate of follicles and overall fecundity depends, in part, on nutritional and hormonal status during the previtellogenic resting stage. Mating female mosquitoes also altered follicle quality and resorption similarly to nutrition or hormonal application and demonstrates that male accessory gland substances such as JH III passed to the female during copulation have a strong effect on ovarian physiology during the previtellogenic resting stage and can influence reproductive output. Taken together these results demonstrate that the previtellogenic resting stage is not an inactive period but is instead a period marked by extensive life-history and fitness trade-offs in response to nutrition, hormones and mating stimuli.
Resumo:
We have modified a technique which uses a single pair of primer sets directed against homologous but distinct genes on the X and Y chromosomes, all of which are coamplified in the same reaction tube with trace amounts of radioactivity. The resulting bands are equal in length, yet distinguishable by restriction enzyme sites generating two independent bands, a 364 bp X-specific band and a 280 bp Y-specific band. A standard curve was generated to show the linear relationship between X/Y ratio average vs. %Y or %X chromosomal content. Of the 51 purified amniocyte DNA samples analyzed, 16 samples showed evidence of high % X contamination while 2 samples demonstrated higher % Y than the expected 50% X and 50% Y chromosomal content. With regards to the 25 processed sperm samples analyzed, X-sperm enrichment was evident when compared to the primary sex ratio whereas Y-sperm was enriched when we compared before and after selection samples.
Resumo:
Humoral and cells surface molecules of the mammalian immune system, grouped into the Immunoglobulin Gene Superfamily, share protein structure and gene sequence homologies with molecules found among diverse phylogenetic groups. In histocompatibility studies, the gorgonian coral Swiftia exserta has recently demonstrated specific alloimmunity with memory (Salter-Cid and Bigger, 1991. Biological Bulletin Vol 181). In an attempt to shed light on the origins of this gene family and the evolution of the vertebrate immune response, genomic DNA from Swiftia exserta was isolated, purified, and analyzed by Southern blot hybridization with mouse gene probes corresponding to two molecules of the Immunoglobulin Gene Superfamily, the Thy-1 antigen, and the alpha-3 domain of the MHC Class I histocompatibility marker. Hybridizations were conducted under low to non-stringent conditions to allow binding of mismatched homologs that may exist between the mouse gene probes and the Swiftia DNA. Removal of non-specific binding (sequences less than 70% homologous) occurred in washing steps. Results show that with the probes selected, the method chosen, and the conditions applied, no evidence of sequences of 70% or greater homology to the mouse Thy-1 or MHC Class I alpha-3 genes exist in Swiftia exserta genome.