9 resultados para Generalised Linear Modeling
em Digital Commons at Florida International University
Resumo:
This study explored the effects of class size on faculty and students. Specifically, it examined the relationship of class size and students' participation in class, faculty interactive styles, and academic environment and how these behaviors affected student achievement (percentage of students passing). The sample was composed of 629 students in 30 sections of Algebra I at a large, urban community college. A survey was administered to the students to solicit their perceptions on their participation in class, their faculty interaction style, and the academic environment in their classes. Selected classes were observed to triangulate the findings. The relationship of class size to student participation, faculty interactive styles, and academic environment was determined by using hierarchical linear modeling (HLM). A significant difference was found on the participation of students related to class size. Students in smaller classes participated more and were more engaged than students in larger classes. Regression analysis using the same variables in small and large classes showed that faculty interactive styles significantly predicted student achievement. Stepwise regression analyses of student and faculty background variables showed that (a) students' estimate of GPA was significantly related to their achievement (r = .63); (b) older students reported more participation than did younger ones, (c) students in classes taught by female, Hispanic faculty earned higher passing grades, and (d) students' participation was greater with adjunct professors. Class observations corroborated these findings. The analysis and observational data provided sufficient evidence to warrant the conclusion that small classes were not always most effective in promoting achievement. It was found that small classes may be an artifact of ineffectual teaching, actual or by reputation. While students in small classes participate and are more engaged than students in larger classes, the class-size effect is essentially due to what happens in instruction to promote learning. The interaction of the faculty with students significantly predicted students' achievement regardless of class size. Since college students select their own classes, students do not register for classes taught by faculty with poor teaching reputation, thereby leading to small classes. Further studies are suggested to determine reasons why classes differ in size.
Resumo:
The extant literature had studied the determinants of the firms’ location decisions with help of host country characteristics and distances between home and host countries. Firm resources and its internationalization strategies had found limited attention in this literature. To address this gap, the research question in this dissertation was whether and how firms’ resources and internationalization strategies impacted the international location decisions of emerging market firms. ^ To explore the research question, data were hand-collected from Indian software firms on their location decisions taken between April 2000 and March 2009. To analyze the multi-level longitudinal dataset, hierarchical linear modeling was used. The results showed that the internationalization strategies, namely market-seeking or labor-seeking had direct impact on firms’ location decision. This direct relationship was moderated by firm resource which, in case of Indian software firms, was the appraisal at CMMI level-5. Indian software firms located in developed countries with a market-seeking strategy and in emerging markets with a labor-seeking strategy. However, software firms with resource such as CMMI level-5 appraisal, when in a labor-seeking mode, were more likely to locate in a developed country over emerging market than firms without the appraisal. Software firms with CMMI level-5 appraisal, when in market-seeking mode, were more likely to locate in a developed country over an emerging market than firms without the appraisal. ^ It was concluded that the internationalization strategies and resources of companies predicted their location choices, over and above the variables studied in the theoretical field of location determinants.^
Resumo:
Purpose: Depression in older females is a significant and growing problem. Females who experience life stressors across the life span are at higher risk for developing problems with depression than their male counterparts. The primary aim of this study was (a) to examine gender-specific differences in the correlates of depression in older primary care patients based on baseline and longitudinal analyses; and (b) to examine the longitudinal effect of biopsychosocial risk factors on depression treatment outcomes in different models of behavioral healthcare (i.e., integrated care and enhanced referral). Method: This study used a quantitative secondary data analysis with longitudinal data from the Primary Care Research in Substance Abuse and Mental Health for Elderly (PRISM-E) study. A linear mixed model approach to hierarchical linear modeling was used for analysis using baseline assessment, and follow-up from three-month and six-month. Results: For participants diagnosed with major depressive disorder female gender was associated with increased depression severity at six-month compared to males at six-month. Further, the interaction between gender and life stressors found that females who reported loss of family and friends, family issues, money issues, medical illness was related to higher depression severity compared to males whereas lack of activities was related to lower depression severity among females compared to males. Conclusion: These findings suggest that gender moderated the relationship between specific life stressors and depression severity similar to how a protective factor can impact a person's response to a problem and reduce the negative impact of a risk factor on a problem outcome. Therefore, life stressors may be a reliable predictor of depression for both females and males in either behavioral health treatment model. This study concluded that life stressors influence males basic comfort, stability, and survival whereas life stressors influence females' development, personal growth, and happiness; therefore, life stressors may be a useful component to include in gender-based screening and assessment tools for depression. ^
Resumo:
The extant literature had studied the determinants of the firms’ location decisions with help of host country characteristics and distances between home and host countries. Firm resources and its internationalization strategies had found limited attention in this literature. To address this gap, the research question in this dissertation was whether and how firms’ resources and internationalization strategies impacted the international location decisions of emerging market firms. To explore the research question, data were hand-collected from Indian software firms on their location decisions taken between April 2000 and March 2009. To analyze the multi-level longitudinal dataset, hierarchical linear modeling was used. The results showed that the internationalization strategies, namely market-seeking or labor-seeking had direct impact on firms’ location decision. This direct relationship was moderated by firm resource which, in case of Indian software firms, was the appraisal at CMMI level-5. Indian software firms located in developed countries with a market-seeking strategy and in emerging markets with a labor-seeking strategy. However, software firms with resource such as CMMI level-5 appraisal, when in a labor-seeking mode, were more likely to locate in a developed country over emerging market than firms without the appraisal. Software firms with CMMI level-5 appraisal, when in market-seeking mode, were more likely to locate in a developed country over an emerging market than firms without the appraisal. It was concluded that the internationalization strategies and resources of companies predicted their location choices, over and above the variables studied in the theoretical field of location determinants.
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^
Resumo:
Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.