2 resultados para Gear efficiency and gear selectivity

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Core strength training (CST) has been popular in the fitness industry for a decade. Although strong core muscles are believed to enhance athletic performance, only few scientific studies have been conducted to identify the effectiveness of CST on improving athletic performance. Objective: Identify the effects of a 6-wk CST on running kinetics, lower extremity stability, and running performance in recreational and competitive runners. Design and Setting: A test-retest, randomized control design was used to assess the effect of CST and no CST on ground reaction force (GRF), lower extremity stability scores, and running performance. Participants: Twenty-eight healthy adults (age, 36.9+9.4yrs, height, 168.4+9.6cm, mass, 70.1+15.3kg) were recruited and randomly divided into two groups. Main outcome Measures: GRF was determined by calculating peak impact vertical GRF (vGRF), peak active vGRF, duration of the breaking or horizontal GRF (hGRF), and duration of the propulsive hGRF as measured while running across a force plate. Lower extremity stability in three directions (anterior, posterior, lateral) was assessed using the Star Excursion Balance Test (SEBT). Running performance was determined by 5000 meter run measured on selected outdoor tracks. Six 2 (time) X 2 (condition) mixed-design ANOVA were used to determine if CST influences on each dependent variable, p < .05. Results: No significant interactions were found for any kinetic variables and SEBT score, p>.05. But 5000m run time showed significant interaction, p < .05. SEBT scores improved in both groups, but more in the experimental group. Conclusion: CST did not significantly influence kinetic efficiency and lower extremity stability, but did influence running performance.