4 resultados para GRAM-NEGATIVE-BACTERIA

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence, critical for establishing infection. There are two major pathways of QS systems. Type 1 is species specific or intra-species communication in which N-acylhomoserine lactones (Gram-negative bacteria) or oligopeptides (Gram-positive bacteria) are employed as signaling molecules (autoinducer one). Type 2 is inter-species communication in which S-4,5-dihydroxy-2,3-pentanedione (DPD) or its borate esters are used as signaling molecules. The DPD is biosynthesized by LuxS enzyme from S-ribosylhomocysteine (SRH). Recent increase in prevalence of bacterial strains resistant to antibiotics emphasizes the need for the development of new generation of antibacterial agents. Interruption of QS by small molecules is one of the viable options as it does not affect bacterial growth but only virulence, leading to less incidence of microbial resistance. Thus, in this work, inhibitors of both N-acylhomoserine lactone (AHL) mediated intra-species and LuxS enzyme, involved in inter-species QS are targeted. The γ-lactam and their reduced cyclic azahemiacetal analogs, bearing the additional alkylthiomethyl substituent, were designed and synthesized targeting AHL mediated QS systems in P. aeruginosa and Vibrio harveyi. The γ-lactams with nonylthio or dodecylthio chains acted as inhibitors of las signaling in P. aeruginosa with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent were found to strongly inhibit both las and rhl signaling in P. aeruginosa at higher concentrations. However, lactam and their azahemiacetal analogs were found to be inactive in V. harveyi QS systems. The 4-aza-S-ribosyl-L-homocysteine (4-aza-SRH) analogs and 2-deoxy-2-substituted-S-ribosyl-L-homocysteine analogs were designed and synthesized targeting Bacillus subtilis LuxS enzyme. The 4-aza-SRH analogs in which oxygen in ribose ring is replaced by nitrogen were further modified at anomeric position to produce pyrrolidine, lactam, nitrone, imine and hemiaminal analogs. Pyrrolidine and lactam analogs which lack anomeric hydroxyl, acted as competitive inhibitors of LuxS enzyme with KI value of 49 and 37 µM respectively. The 2,3-dideoxy lactam analogs were devoid of activity. Such findings attested the significance of hydroxyl groups for LuxS binding and activity. Hemiaminal analog of SRH was found to be a time-dependent inhibitor with IC50 value of 60 µM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increased antibiotic exposure from anthropogenic sources, soil microbes are an ever-increasing ecological pool of resistant bacteria. This is the case with bacterial resistance to vancomycin through transfer of van-resistance genes by transposons. Studies show that bacterial species other than enteroccoci harbor genetic-like elements such as the Tn1546 transposon containing vancomycin-resistant genes. Overuse and misuse of antibiotics in hospital settings and agricultural practices have led to an increase in transferability of vancomycin-resistant genes among microbes. The objective of this project is to analyze the diversity of these genes found in the soil microbes from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine the degree of resistance. Results showed that all bacterial isolates were resistant to penicillin at the 10 µg concentration and most were susceptible to varying vancomycin concentrations (10 µg, 20 µg, and 30 µg). A 1465 bp fragment was amplified from the 16S rDNA gene using 27F and 1492R universal primers from the multi-antibiotic resistant bacteria and sequenced to identify the isolates. Three Gram-negative bacteria genera were identified with the closest phylogenetic match to: Pseudomonas sp., Stenotrophomonas sp., Xanthomonas sp., as well as two Gram-positive bacteria genera: Bacillus sp. and Brevibacillus sp. The isolates’ vanA and vanB genes were amplified using the respective primers. Ongoing work is underway to sequence and compare these known van resistant genes, with the goal of revealing intrinsic vancomycin resistance present in soil bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the hallmarks of bacterial survival is their ability to adapt rapidly to changing environmental conditions. Niche adaptation is a response to the signals received that are relayed, often to regulators that modulate gene expression. In the post-genomic era, DNA microarrays are used to study the dynamics of gene expression on a global scale. Numerous studies have used Pseudomonas aeruginosa--a Gram-negative environmental and opportunistic human pathogenic bacterium--as the model organism in whole-genome transcriptome analysis. This paper reviews the transcriptome studies that have led to immense advances in our understanding of the biology of this intractable human pathogen. Comparative analysis of 23 P. aeruginosa transcriptome studies has led to the identification of a unique set of genes that are signal specific and a core set that is differentially regulated. The 303 genes in the core set are involved in bacterial homeostasis, making them attractive therapeutic targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic resistant strains of P. aeruginosa are commonly found as secondary infection in immune-compromised patients leaving significant mortality and healthcare cost. Pseudomonas aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III secretion system are critical molecules required to disrupt mammalian cell signaling and holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching from a GDP- bound inactive form to a GTP-bound active form. Activation and inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some pathogenic bacteria have shown affinity for Rab proteins during infection and make their way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are possible targets for ADP-ribosylation modification. However, the expression of Rin1, but not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA domains are required for optimal Rab5 activation in conjunction with active Ras. These observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 during the phagocytosis of P. aeruginosa. The second part of this dissertation investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of several P. aeruginosa strains were completely susceptible to DhL at a concentration between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) inhibited growth and many virulent activities without damaging the integrity of the cell suggesting anti-Pseudomonas activity of DhL.