8 resultados para GENERATORS
em Digital Commons at Florida International University
Resumo:
The Republic of South Africa since the 1948 inception of Apartheid policies has experienced economic problems resulting from spatially dispersed growth. The election of President Mandela in 1994, however, eliminated the last forms of Apartheid as well as its discriminatory spatial, social, and economic policies, specially toward black Africans. In Cape Town, South Africa, several initiatives to restructure and to economically revitalize blighted and abandoned township communities, like Langa, have been instituted. One element of this strategy is the development of activity streets. The main questions asked in this study are whether activity streets are a feasible solution to the local economic problems left by the apartheid system and whether activity streets represent an economically sustainable approach to development. An analysis of a proposed activity street in Langa and its potential to generate jobs is undertaken. An Employment Generation Model used in this study shows that many of the businesses rely on the local purchasing power of the residents. Since the economic activities are mostly service oriented, a combination of manufacturing industries and institutionally implemented strategies within the township will have to be developed in order to generate sustainable employment. The result seem to indicate that, in Langa, the activity street depend very much on an increase in sales, pedestrian and vehicular traffic flow. ^
Resumo:
Because some Web users will be able to design a template to visualize information from scratch, while other users need to automatically visualize information by changing some parameters, providing different levels of customization of the information is a desirable goal. Our system allows the automatic generation of visualizations given the semantics of the data, and the static or pre-specified visualization by creating an interface language. We address information visualization taking into consideration the Web, where the presentation of the retrieved information is a challenge. ^ We provide a model to narrow the gap between the user's way of expressing queries and database manipulation languages (SQL) without changing the system itself thus improving the query specification process. We develop a Web interface model that is integrated with the HTML language to create a powerful language that facilitates the construction of Web-based database reports. ^ As opposed to other papers, this model offers a new way of exploring databases focusing on providing Web connectivity to databases with minimal or no result buffering, formatting, or extra programming. We describe how to easily connect the database to the Web. In addition, we offer an enhanced way on viewing and exploring the contents of a database, allowing users to customize their views depending on the contents and the structure of the data. Current database front-ends typically attempt to display the database objects in a flat view making it difficult for users to grasp the contents and the structure of their result. Our model narrows the gap between databases and the Web. ^ The overall objective of this research is to construct a model that accesses different databases easily across the net and generates SQL, forms, and reports across all platforms without requiring the developer to code a complex application. This increases the speed of development. In addition, using only the Web browsers, the end-user can retrieve data from databases remotely to make necessary modifications and manipulations of data using the Web formatted forms and reports, independent of the platform, without having to open different applications, or learn to use anything but their Web browser. We introduce a strategic method to generate and construct SQL queries, enabling inexperienced users that are not well exposed to the SQL world to build syntactically and semantically a valid SQL query and to understand the retrieved data. The generated SQL query will be validated against the database schema to ensure harmless and efficient SQL execution. (Abstract shortened by UMI.)^
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Large read-only or read-write transactions with a large read set and a small write set constitute an important class of transactions used in such applications as data mining, data warehousing, statistical applications, and report generators. Such transactions are best supported with optimistic concurrency, because locking of large amounts of data for extended periods of time is not an acceptable solution. The abort rate in regular optimistic concurrency algorithms increases exponentially with the size of the transaction. The algorithm proposed in this dissertation solves this problem by using a new transaction scheduling technique that allows a large transaction to commit safely with significantly greater probability that can exceed several orders of magnitude versus regular optimistic concurrency algorithms. A performance simulation study and a formal proof of serializability and external consistency of the proposed algorithm are also presented.^ This dissertation also proposes a new query optimization technique (lazy queries). Lazy Queries is an adaptive query execution scheme which optimizes itself as the query runs. Lazy queries can be used to find an intersection of sub-queries in a very efficient way, which does not require full execution of large sub-queries nor does it require any statistical knowledge about the data.^ An efficient optimistic concurrency control algorithm used in a massively parallel B-tree with variable-length keys is introduced. B-trees with variable-length keys can be effectively used in a variety of database types. In particular, we show how such a B-tree was used in our implementation of a semantic object-oriented DBMS. The concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict detection. This algorithm ensures serializability and external consistency by using logical clocks and backward validation of transactional queries. A formal proof of correctness of the proposed algorithm is also presented. ^
Resumo:
The primary goal of this dissertation is the study of patterns of viral evolution inferred from serially-sampled sequence data, i.e., sequence data obtained from strains isolated at consecutive time points from a single patient or host. RNA viral populations have an extremely high genetic variability, largely due to their astronomical population sizes within host systems, high replication rate, and short generation time. It is this aspect of their evolution that demands special attention and a different approach when studying the evolutionary relationships of serially-sampled sequence data. New methods that analyze serially-sampled data were developed shortly after a groundbreaking HIV-1 study of several patients from which viruses were isolated at recurring intervals over a period of 10 or more years. These methods assume a tree-like evolutionary model, while many RNA viruses have the capacity to exchange genetic material with one another using a process called recombination. ^ A genealogy involving recombination is best described by a network structure. A more general approach was implemented in a new computational tool, Sliding MinPD, one that is mindful of the sampling times of the input sequences and that reconstructs the viral evolutionary relationships in the form of a network structure with implicit representations of recombination events. The underlying network organization reveals unique patterns of viral evolution and could help explain the emergence of disease-associated mutants and drug-resistant strains, with implications for patient prognosis and treatment strategies. In order to comprehensively test the developed methods and to carry out comparison studies with other methods, synthetic data sets are critical. Therefore, appropriate sequence generators were also developed to simulate the evolution of serially-sampled recombinant viruses, new and more through evaluation criteria for recombination detection methods were established, and three major comparison studies were performed. The newly developed tools were also applied to "real" HIV-1 sequence data and it was shown that the results represented within an evolutionary network structure can be interpreted in biologically meaningful ways. ^
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.