2 resultados para Fusarium sp.
em Digital Commons at Florida International University
Resumo:
Fusarium oxysporum forma specialis cubense is a soilborne phytopathogen that infects banana. The true evolutionary identity of this so called species, Fusarium oxysporum, is still unknown. Many techniques have been applied in order to gain insight for the observed genetic diversity of this species. The current classification system is based on vegetative compatibility groups (VCG's). Vegetative compatibility is a self non-self recognition system in which only those belonging to a VCG can form stable heterokaryons, cells containing two distinct nuclei. Heterokaryons in turn, are formed from hypha! anastomosis, the fusion of two hyphae. Furthermore, subsequent to heterokaryon formation potential mechanisms exist which may generate genetic variability. One is through viral transfer upon hyphal anastomosis. The other mechanism is a form of mitotic recombination referred to as the parasexual cycle. Very little research has been performed to directly obser.ve the cellular events; hypha! anastomosis, heterokaryon formation, and the parasexual cycle in Fusarium oxysporum f. sp. cubense. The purpose of this research was to design and use methods which would allow for the detection of hypha! anastomosis and heterokaryon formation, as well as any characteristics surrounding this event, within and between VCG's in Foe. First, some general growth properties were recorded: the number of nuclei per hypha, the size ofthe hyphal tip cell, the size of the cell adjacent to the hypha! tip (pre-tip) cell, and the number of cells to the first branch point. Second, four methods were designed in order to assay hyphal anastomosis and heterokaryon formation: 1) pairings on membrane: phase or brightfield microscopy, 2) pairings on membrane: fluorescence microscopy, 3) spore crosses: fluorescence microscopy, and 4) double picks in fractionated MMA. All of these methods were promtsmg.
Resumo:
Fusarium oxysporum is a diverse, asexual fungal species composed of both saprophytic and pathogenic members. The destructive phytopathogens are classified into formae speciales based on the host species and into vegetative compatibility groups (VCGs) based on the ability of two individuals to form heterokaryons. Parasexuality, a non-sexual mode of genetic exchange unique to some fungi has been demonstrated in the laboratory in Fusarium oxysporum f. sp. cubense (FOC). The goals of this dissertation were threefold: to ascertain whether mitochondrial (mt) markers can distinguish race differences in FOC; to determine genetic relatedness of VCGs in FOC based on a mt marker; and to discover the mode of mt inheritance during a parasexual cycle.^ Band patterns produced by electrophoresis of Hae III digested genomic DNA indicated that VCG differences, not race, could be discerned by mtDNA analysis. Primers were designed to amplify a mt intergenic locus which served as a molecular marker to screen 55 strains of FOC in 16 VCGs using both single strand conformational polymorphism and DNA sequencing. Based on homogeneity of the locus, strains were assigned to seven mitotypes, a classification unit which I introduced and found informative for grouping related VCGs.^ To determine the mode of mt inheritance during a parasexual cycle, strains in different mitotypes were paired. Mitochondrial inheritance in all hybrid progeny was found to be uniparental. I speculated that if a parasexual cycle occurs in nature there would be greater variation in the nuclear genome than the mt. This could produce multiple VCGs within a mitotype, a phenomenon observed in FOC. Based on these data, I concluded that parasexuality in nature may contribute to the diversity observed in Fusarium oxysporum. ^