8 resultados para Fundamentals in linear algebra
em Digital Commons at Florida International University
Resumo:
Success in mathematics has been identified as a predictor of baccalaureate degree completion. Within the coursework of college mathematics, College Algebra has been identified as a high-risk course due to its low success rates. ^ Research in the field of attribution theory and academic achievement suggests a relationship between a student's attributional style and achievement. Theorists and researchers contend that attributions influence individual reactions to success and failure. They also report that individuals use attributions to explain and justify their performance. Studies in mathematics education identify attribution theory as the theoretical orientation most suited to explain academic performance in mathematics. This study focused on the relationship among a high risk course, low success rates, and attribution by examining the difference in the attributions passing and failing students gave for their performance in College Algebra. ^ The methods for the study included a pilot administration of the Causal Dimension Scale (CDSII) which was used to conduct reliability and principal component analyses. Then, students (n = 410) self-reported their performance on an in-class test and attributed their performance along the dimensions of locus of causality, stability, personal controllability, and external controllability. They also provided open-ended attribution statements to explain the cause of their performance. The quantitative data compared the passing and failing groups and their attributions for performance on a test using One-Way ANOVA and Pearson chi square procedures. The open-ended attribution statements were coded in relation to ability, effort, task difficulty, and luck and compared using a Pearson chi square procedure. ^ The results of the quantitative data comparing passing and failing groups and their attributions along the dimensions measured by the CDSII indicated statistical significance in locus of causality, stability, and personal controllability. The results comparing the open-ended attribution statements indicated statistical significance in the categories of effort and task difficulty. ^
Resumo:
Purpose: To investigate to what degree the presence of hypertension (HTN) and poor glycemic control (GC) influences the likelihood of having microalbuminuria (MAU) among Cuban Americans with type 2 diabetes (T2D).Methods: A cross-sectional study conducted in Cuban Americans (n = 179) with T2D. Participants were recruited from a randomly generated mailing list purchased from KnowledgeBase Marketing, Inc. Blood pressure (BP) was measured twice and averaged using an adult size cuff. Glycosylated hemoglobin (A1c) levels were measured from whole blood samples with the Roche Tina-quant method. First morning urine samples were collected from each participant to determine MAU by a semiquantitative assay (ImmunoDip).Results: MAU was present in 26% of Cuban Americans with T2D. A significantly higher percentage of subjects with MA had HTN (P = 0.038) and elevated A1C (P = 0.002) than those with normoalbuminuria. Logistic regression analysis showed that after controlling for covariates, subjects with poor GC were 6.76 times more likely to have MAU if they had hypertension compared with those without hypertension (P = 0.004; 95% confidence interval [CI]: 1.83, 23.05). Conclusion: The clinical significance of these findings emphasizes the early detection of MAU in this Hispanic subgroup combined with BP and good GC, which are fundamentals in preventing and treating diabetes complications and improving individuals’ renal and cardiovascular outcomes.
Resumo:
We are able to give a complete description of four-dimensional Lie algebras g which satisfy the tame-compatible question of Donaldson for all almost complex structures J on g are completely described. As a consequence, examples are given of (non-unimodular) four-dimensional Lie algebras with almost complex structures which are tamed but not compatible with symplectic forms.? Note that Donaldson asked his question for compact four-manifolds. In that context, the problem is still open, but it is believed that any tamed almost complex structure is in fact compatible with a symplectic form. In this presentation, I will define the basic objects involved and will give some insights on the proof. The key for the proof is translating the problem into a Linear Algebra setting. This is a joint work with Dr. Draghici.
Resumo:
Miami-Dade County has approximately 27,000 people living with HIV (PLWH), and the highest HIV incidence in the nation. PLWH have reported several types of sleep disturbances. Caffeine is an anorexic and lipolytic stimulant that may adversely affect sleep patterns, dietary intakes and body composition. High caffeine consumption (>250 mg. per day or the equivalent of >4 cups of brewed coffee) may also affect general functionality, adherence to antiretroviral treatment (ART) and HIV care. This study assess the relationship of high caffeine intake with markers of disease progression, sleep quality, insomnia, anxiety, nutritional intakes and body composition. A convenience sample of 130 PLWH on stable ART were recruited from the Miami Adult Studies on HIV (MASH) cohort, and followed for three months. After consenting, questionnaires on Modified Caffeine Consumption (MCCQ), Pittsburg Insomnia Rating Scale (PIRS), Pittsburg Sleep Quality Index (PSQI), Generalized Anxiety Disorder-7 (GAD-7), socio-demographics, drug and medication use were completed. CD4 count, HIV viral load, anthropometries, and body composition measures were obtained. Mean age was 47.89±6.37 years, 60.8% were male and 75.4% were African-Americans. Mean caffeine intake at baseline was 337.63 ± 304.97 mg/day (Range: 0-1498 mg/day) and did not change significantly at 3 months. In linear regression, high caffeine consumption was associated with higher CD4 cell count (β=1.532, P=0.049), lower HIV viral load (β=-1.067, P=0.048), higher global PIRS (β=1.776, P=0.046), global PSQI (β=2.587, P=0.038), and GAD-7 scores (β=1.674, P=0.027), and with lower fat mass (β=-0.994, P=0.042), energy intakes (β=-1.643, P=0.042) and fat consumption (β=-1.902, P=0.044), adjusting for relevant socioeconomic and disease progression variables. Over three months, these associations remained significant. The association of high caffeine with lower BMI weakened when excluding users of other anorexic and stimulant drugs such as cocaine and methamphetamine, suggesting that caffeine in combination, but not alone, may worsen their action. In summary, high caffeine consumption was associated with better measures of disease progression; but was also detrimental on sleep quality, nutritional intakes, BMI and body composition and associated with insomnia and anxiety. Large scale studies for longer time are needed to elucidate the contribution of caffeine to the well-being of PLWH.
Resumo:
The Intoxilyzer 5000 was tested for calibration curve linearity for ethanol vapor concentration between 0.020 and 0.400g/210L with excellent linearity. Calibration error using reference solutions outside of the allowed concentration range, response to the same ethanol reference solution at different temperatures between 34 and 38$\sp\circ$C, and its response to eleven chemicals, 10 mixtures of two at the time, and one mixture of four chemicals potentially found in human breath have been evaluated. Potential interferents were chosen on the basis of their infrared signatures and the concentration range of solutions corresponding to the non-lethal blood concentration range of various volatile organic compounds reported in the literature. The result of this study indicates that the instrument calibrates with solutions outside the allowed range up to $\pm$10% of target value. Headspace FID dual column GC analysis was used to confirm the concentrations of the solutions. Increasing the temperature of the reference solution from 34 to 38$\sp\circ$C resulted in linear increases in instrument recorded ethanol readings with an average increase of 6.25%/$\sp\circ$C. Of the eleven chemicals studied during this experiment, six, isopropanol, toluene, methyl ethyl ketone, trichloroethylene, acetaldehyde, and methanol could reasonably interfere with the test at non-lethal reported blood concentration ranges, the mixtures of those six chemicals showed linear additive results with a combined effect of as much as a 0.080g/210L reading (Florida's legal limit) without any ethanol present. ^
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
Many U.S. students do not perform well on mathematics assessments with respect to algebra topics such as linear functions, a building-block for other functions. Poor achievement of U.S. middle school students in this topic is a problem. U.S. eighth graders have had average mathematics scores on international comparison tests such as Third International Mathematics Science Study, later known as Trends in Mathematics and Science Study, (TIMSS)-1995, -99, -03, while Singapore students have had highest average scores. U.S. eighth grade average mathematics scores improved on TIMMS-2007 and held steady onTIMMS-2011. Results from national assessments, PISA 2009 and 2012 and National Assessment of Educational Progress of 2007, 2009, and 2013, showed a lack of proficiency in algebra. Results of curriculum studies involving nations in TIMSS suggest that elementary textbooks in high-scoring countries were different than elementary textbooks and middle grades texts were different with respect to general features in the U.S. The purpose of this study was to compare treatments of linear functions in Singapore and U.S. middle grades mathematics textbooks. Results revealed features currently in textbooks. Findings should be valuable to constituencies who wish to improve U.S. mathematics achievement. Portions of eight Singapore and nine U.S. middle school student texts pertaining to linear functions were compared with respect to 22 features in three categories: (a) background features, (b) general features of problems, and (c) specific characterizations of problem practices, problem-solving competency types, and transfer of representation. Features were coded using a codebook developed by the researcher. Tallies and percentages were reported. Welch's t-tests and chi-square tests were used, respectively, to determine whether texts differed significantly for the features and if codes were independent of country. U.S. and Singapore textbooks differed in page appearance and number of pages, problems, and images. Texts were similar in problem appearance. Differences in problems related to assessment of conceptual learning. U.S. texts contained more problems requiring (a) use of definitions, (b) single computation, (c) interpreting, and (d) multiple responses. These differences may stem from cultural differences seen in attitudes toward education. Future studies should focus on density of page, spiral approach, and multiple response problems.