4 resultados para Full-length Human

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In response to the recent wide-scale applications of lnformation Technology (I/T) in the hospitality industry, this study analyzed articles in leading hospitality research journals, including the International Journal of Hospitality Management, Cornell Hotel and Restaurant Administration Quarterly, and the Journal of Hospitality & Tourism Research published in the period 1985 to 2004. A total of 1,896 full-length papers were published in these journals during the study period. Excluding book reviews, research notes, and comments from editors and readers, 130 full-length IT-related papers were identified. These papers were then grouped into six defined categories of IT. The findings revealed that during the entire study period, the largest number of publications were in general business applications, whereas the highest growth rate from the first decade to the second decade were in articles on networking

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research was to demonstrate the applicability of reduced-size STR (Miniplex) primer sets to challenging samples and to provide the forensic community with new information regarding the analysis of degraded and inhibited DNA. The Miniplex primer sets were validated in accordance with guidelines set forth by the Scientific Working Group on DNA Analysis Methods (SWGDAM) in order to demonstrate the scientific validity of the kits. The Miniplex sets were also used in the analysis of DNA extracted from human skeletal remains and telogen hair. In addition, a method for evaluating the mechanism of PCR inhibition was developed using qPCR. The Miniplexes were demonstrated to be a robust and sensitive tool for the analysis of DNA with as low as 100 pg of template DNA. They also proved to be better than commercial kits in the analysis of DNA from human skeletal remains, with 64% of samples tested producing full profiles, compared to 16% for a commercial kit. The Miniplexes also produced amplification of nuclear DNA from human telogen hairs, with partial profiles obtained from as low as 60 pg of template DNA. These data suggest smaller PCR amplicons may provide a useful alternative to mitochondrial DNA for forensic analysis of degraded DNA from human skeletal remains, telogen hairs, and other challenging samples. In the evaluation of inhibition by qPCR, the effect of amplicon length and primer melting temperature was evaluated in order to determine the binding mechanisms of different PCR inhibitors. Several mechanisms were indicated by the inhibitors tested, including binding of the polymerase, binding to the DNA, and effects on the processivity of the polymerase during primer extension. The data obtained from qPCR illustrated a method by which the type of inhibitor could be inferred in forensic samples, and some methods of reducing inhibition for specific inhibitors were demonstrated. An understanding of the mechanism of the inhibitors found in forensic samples will allow analysts to select the proper methods for inhibition removal or the type of analysis that can be performed, and will increase the information that can be obtained from inhibited samples.