3 resultados para Free surface flows

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Everglades National Park (ENP) is the last hydrologic unit in the series of impounded marsh units that make up the present-day Everglades. The ENP receives water from upstream Water Conservation Areas via canals and water control structures that are highly regulated for flood control, water supply, wildlife management, concerns about poor water quality and the potential for downstream ecosystem degradation. Recent surveys of surface soils in ENP, designed for random sampling for spatial analysis of soil nutrients, did not sample proximate to inflow structures and thus did not detect increased soil phosphorus associated with these water conveyances. This study specifically addressed these areas in a focused sampling effort at three key inflow points in northeast ENP which revealed elevated soil TP proximate to inflows. Two transects extending down Shark River Slough and one down Taylor Slough (a natural watershed of particular ecological value) were found to have soil TP levels in excess of 500 mg kg−1—a threshold above which P enrichment is indicated. These findings suggest the negative impact of elevated water (P) from surface flows and support the assertion that significant soil TP enrichment is occurring in Taylor Slough and other areas of northeastern ENP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research investigated the relationship between investments in fixed assets and free cash flows of U.S. restaurant firms while controlling for future investment opportunities and financial constraints. It also investigated investment and cash-flow sensitivity in the context of economic conditions. Results suggested that investments in small firms (with higher financial constraints) had relatively weaker sensitivity to cash flows than investments in large firms (with higher sensitivity). Controlling for economic conditions did not significantly change results. While the debate over sensitivity of investments to cash flows remains unresolved, it has not been explored widely in industry contexts, especially in services such as the restaurant industry. In addition to its contribution to this literature, this paper provides implications for cash-flow management in publicly traded restaurant companies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.