2 resultados para Formulation in pressures and displacements

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand high pressure behavior of solids, both silicates and oxides have been investigated to clarify the high pressure melting, phase transformations and thermal parameters as well as their size dependences, both theoretically and experimentally. ^ To judge the precision of data determined experimentally, the reliabilities of different high pressure techniques have been discussed. A thermodynamic model has been developed and demonstrated to be able to closely reproduce the melting of solids by comparison between results calculated and data obtained experimentally, including metals (Al, Ni and Pt), Silicates (Mg3Al 2Si3O12 and CaMgSi2O6), Halides (NaCl, CsCl and LiF) and Oxides (MgO, FeO and Al2O3). The melting data obtained have been discussed to address the dynamics of the Earth's interior. ^ Results obtained with Raman spectroscopy and x-ray diffraction show that solids including silicates (andradite and pyrope) and oxides (CeO2 and TiO2) undergo a series of pressure-induced phase transformations. The effects of particle size under high pressures have been investigated. The results obtained indicate that the reduction of particle size leads to the enhancement of the bulk modulus and a significant decrease of transition pressure in TiO2 (rutile) and CeO2. The pressure-induced amorphization in anatase also results from the size effects. ^ Combining the data obtained with global seismic tomography, the physics and chemistry of the Earth's mantle and the dynamics of the core-mantle interaction have been discussed. The high pressure phases of Al3+- and Fe3+-bearing minerals play important roles in the dynamics of the lower mantle. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metals (Ti, Zr, Hf, Mo, W, V, Nb, Ta, Pd, Pt, Cu, Ag, and Au) are essential building units of many materials and have important industrial applications. Therefore, it is important to understand their thermal and physical behavior when they are subjected to extreme conditions of pressure and temperature. This dissertation presents: • An improved experimental technique to use lasers for the measurement of thermal conductivity of materials under conditions of very high pressure (P, up to 50 GPa) and temperature (T up to 2500 K). • An experimental study of the phase relationship and physical properties of selected transition metals, which revealed new and unexpected physical effects of thermal conductivity in Zr, and Hf under high P-T. • New phase diagrams created for Hf, Ti and Zr from experimental data. • P-T dependence of the lattice parameters in α-hafnium. Contrary to prior reports, the α-ω phase transition in hafnium has a negative dT/dP slope. • New data on thermodynamic and physical properties of several transition metals and their respective high P-T phase diagrams. • First complete thermodynamic database for solid phases of 13 common transition metals was created. This database has: All the thermochemical data on these elements in their standard state (mostly available and compiled); All the equations of state (EoS) formulated from pressure-volume-temperature data (measured as a part of this study and from literature); Complete thermodynamic data for selected elements from standard to extreme conditions. The thermodynamic database provided by this study can be used with available thermodynamic software to calculate all thermophysical properties and phase diagrams at high P-T conditions. For readers who do not have access to this software, tabulated values of all thermodynamic and volume data for the 13 metals at high P-T are included in the APPENDIX. In the APPENDIX, a description of several other high-pressure studies of selected oxide systems is also included. Thermophysical properties (Cp, H, S, G) of the high P-T ω-phase of Ti, Zr and Hf were determined during the optimization of the EoS parameters and are presented in this study for the first time. These results should have important implications in understanding hexagonal-close-packed to simple-hexagonal phase transitions in transition metals and other materials.