1 resultado para Forms (Mathematics)
em Digital Commons at Florida International University
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (6)
- Applied Math and Science Education Repository - Washington - USA (5)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (25)
- Blue Tiger Commons - Lincoln University - USA (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Brock University, Canada (16)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (99)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (35)
- Cochin University of Science & Technology (CUSAT), India (15)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons at Florida International University (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (9)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (13)
- Helda - Digital Repository of University of Helsinki (24)
- Indian Institute of Science - Bangalore - Índia (65)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (98)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (96)
- Queensland University of Technology - ePrints Archive (197)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- RU-FFYL. Repositorio de la Facultad de Filosofiía y Letras. UNAM. - Mexico (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (3)
- Universidad del Rosario, Colombia (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (9)
- WestminsterResearch - UK (7)
Resumo:
We are able to give a complete description of four-dimensional Lie algebras g which satisfy the tame-compatible question of Donaldson for all almost complex structures J on g are completely described. As a consequence, examples are given of (non-unimodular) four-dimensional Lie algebras with almost complex structures which are tamed but not compatible with symplectic forms.? Note that Donaldson asked his question for compact four-manifolds. In that context, the problem is still open, but it is believed that any tamed almost complex structure is in fact compatible with a symplectic form. In this presentation, I will define the basic objects involved and will give some insights on the proof. The key for the proof is translating the problem into a Linear Algebra setting. This is a joint work with Dr. Draghici.