5 resultados para Forest species

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thirteens hade-adaptedr ain forest species were comparedw ith twelve sun-adaptedt ropical forest species for correlates to leaf optical properties (described previously in Amer. J. Bot. 73: 1100-1108). The two samples were similar in absorptance of quanta for photosynthesis, but the shade-adaptedt axa: 1) had significantlyl ower specificl eaf weights,i ndicatinga more metabolically efficient production of surface for quantum capture; 2) synthesized less chlorophyll per unit area; and 3) used less chlorophyll for capturing the same quanta for photosynthesis. The anatomical features that best correlate with this increased efficiency are palisade cell shape and chloroplast distribution. Palisade cells with more equal dimensions have more chloroplasts on their abaxial surfaces. This dense layer of chloroplasts maximizes the light capture efficiency limited by sieve effects. The more columnar palisade cells of sun-adapted taxa allow light to pass through the central vacuoles and spaces between cells, making chloroplasts less efficient in energy capture, but allowing light to reach chloroplasts in the spongy mesophyll. Pioneer species may be an exception to these two groups of species. Three pioneer taxa included in this study have columnar palisade cells that are extremely narrow and packed closely together. This layer allows little penetration of light, but exposure of the leaf undersurface may provide illumination of spongy mesophyll chloroplasts in these plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The permanent pigmentation of the leaves of tropical rain forest herbs with anthocyanin has traditionally been viewed as a mechanism for enhancing transpiration by increased heat absorption. We report measurements to ?+0.1?0C on four Indo-mal- esian forest species polymorphic with respect to color. There were no detectable differences in temperature between cyanic and green leaves. In deeply shaded habitats, any temperature difference would arise from black-body infrared radiation which all leaves absorb and to which anthocyanins are transparent. Reflectance spectra of the lower leaf surfaces of these species re- vealed increased reflectance around 650-750 nm for cyanic leaves compared with green leaves of the same species. In all spe- cies anthocyanin was located in a single layer of cells immediately below the photosynthetic tissue. These observations provide empirical evidence that the cyanic layer can improve photosynthetic energy capture by back-scattering additional light through the photosynthetic tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elevational distributions of tropical treelines are thought to be determined by temperature, and are predicted to shift upslope in response to global warming. In contrast to this hypothesis, global-scale studies have shown that only half of all studied treelines are shifting upslope. Understanding how treelines will respond to climate change has important implications for global biodiversity, especially in the tropics, because tropical treelines generally represent the upper-elevation distribution limit of the hyper-diverse cloudforest ecosystem. In Chapter 1, I introduce the idea that grasslands found above tropical treelines may represent a potential grass ceiling which forest species cannot cross or invade. I use an extensive literature review to outline potential mechanisms which may be acting to stabilize treeline and prevent forest expansion into high-elevation grasslands. In Chapters 2-4, I begin to explore these potential mechanisms through the use of observational and experimental methods. In Chapter 2, I show that there are significant numbers of seedlings occurring just outside of the treeline in the open grasslands and that seed rain is unlikely to limit seedling recruitment above treeline. I also show that microclimates outside of the closed-canopy cloudforest are highly variable and that mean temperatures are likely a poor explanation of tropical treeline elevations. In Chapter 3, I show that juvenile trees maintain freezing resistances similar to adults, but nighttime radiative cooling near the ground in the open grassland results in lower cold temperatures relative to the free atmosphere, exposing seedlings of some species growing above treeline to lethal frost events. In Chapter 4, I use a large-scale seedling transplant experiment to test the effects of mean temperature, absolute low temperature and shade on transplanted seedling survival. I find that increasing mean temperature negatively affects seedling survival of two treeline species while benefiting another. In addition, low temperature extremes and the presence of shade also appear to be important factors affecting seedling survival above tropical treelines. This work demonstrates that mean temperature is a poor predictor of tropical treelines and that temperature extremes, especially low temperatures, and non-climatic variables should be included in predictions of current and future tropical treeline dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elevational distributions of tropical treelines are thought to be determined by temperature, and are predicted to shift upslope in response to global warming. In contrast to this hypothesis, global-scale studies have shown that only half of all studied treelines are shifting upslope. Understanding how treelines will respond to climate change has important implications for global biodiversity, especially in the tropics, because tropical treelines generally represent the upper-elevation distribution limit of the hyper-diverse cloudforest ecosystem. In Chapter 1, I introduce the idea that grasslands found above tropical treelines may represent a potential grass ceiling which forest species cannot cross or invade. I use an extensive literature review to outline potential mechanisms which may be acting to stabilize treeline and prevent forest expansion into high-elevation grasslands. In Chapters 2-4, I begin to explore these potential mechanisms through the use of observational and experimental methods. In Chapter 2, I show that there are significant numbers of seedlings occurring just outside of the treeline in the open grasslands and that seed rain is unlikely to limit seedling recruitment above treeline. I also show that microclimates outside of the closed-canopy cloudforest are highly variable and that mean temperatures are likely a poor explanation of tropical treeline elevations. In Chapter 3, I show that juvenile trees maintain freezing resistances similar to adults, but nighttime radiative cooling near the ground in the open grassland results in lower cold temperatures relative to the free atmosphere, exposing seedlings of some species growing above treeline to lethal frost events. In Chapter 4, I use a large-scale seedling transplant experiment to test the effects of mean temperature, absolute low temperature and shade on transplanted seedling survival. I find that increasing mean temperature negatively affects seedling survival of two treeline species while benefiting another. In addition, low temperature extremes and the presence of shade also appear to be important factors affecting seedling survival above tropical treelines. This work demonstrates that mean temperature is a poor predictor of tropical treelines and that temperature extremes, especially low temperatures, and non-climatic variables should be included in predictions of current and future tropical treeline dynamics.^