3 resultados para Forest soils

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mercury (Hg) contamination problem in the United Sates has been an important issue due to its potential threat to human and ecological health. This thesis presents a study of two Hg-contaminated sites along the East Fork Poplar Creek (EFPC) at Oak Ridge. The top soils from the terrestrial areas, along with the soils from three vertical soil horizons at the EFPC bank were sampled and analyzed for total-Hg (THg), methyl-Hg, total-organic-carbon (TOC), and pH. The stream bank soils were also analyzed for the stable-Hg-isotopes (198Hg, 199Hg, 200Hg, 201Hg, and 202Hg). Furthermore, some of the soil samples (n=7) from the same study sites were investigated for phytoavailability of mercury as measured by degree of Hg translocation in aboveground biomass of Impatiens walleriana plants grown in the soils.^ The results showed a significant difference (p<0.001) in THg concentrations for the forest soils (42.40±4.98 mg/kg) and the grassland soils (8.71±2.30 mg/kg). The higher THg and methyl-Hg concentrations were commensurate with the higher TOC content in the soils (p<0.001). Also, the THg concentrations for the upstream site was higher (129.08±34.14 mg/kg) than the downstream site (24.31±3.47 mg/kg). The two sites also differed in their stable Hg isotope compositions (p<0.001 for δ199Hg). The stable isotope analysis indicated the increased level of mass dependent isotopic fractionation with increasing depths along the EFPC bank. The difference between the two study sites was also prominent in case of the Hg uptake by the plants, with higher Hg uptake from the upstream soils compared to that from the downstream soils. A significant correlation, r=0.93 p<0.01, was observed between the Hg uptake and the soil-THg concentrations. THg was higher in the leaves (1161.87±310.01 μg/kg) than in the flowers (206.13±55.23 μg/kg) or the stems (634.54±403.35μg/kg). ^ The level of Hg contamination increased with decreasing distance from the point source and was highly influenced by plants/microbes, soil-organic-content, and Hg-speciation. The isotopic study indicated the existence of an additional Hg source in the EFPC watershed, possibly atmospheric Hg-deposition. These findings are worth taking into account while planning any Hg remediation effort and developing Hg loading criteria as per the National Pollutant Discharge Elimination System (NPDES) Program.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial heterogeneity in soils is often characterized by the presence of resource-enriched patches ranging in size from a single shrub to wooded thickets. If the patches persist long enough, the primary constraint on production may transition from one limiting environmental factor to another. Tree islands that are scattered throughout the Florida Everglades basin comprise nutrient-enriched patches, or resource islands, in P-limited oligotrophic marshes. We used principal component analysis and multiple regressions to characterize the belowground environment (soil, hydrology) of one type of tree island, hardwood hammocks, and examined its relationship with the three structural variables (basal area, biomass, and canopy height) indicative of site productivity. Hardwood hammocks in the southern Everglades grow on two distinct soil types. The first, consisting of shallow, organic, relatively low-P soils, is common in the seasonally flooded Marl Prairie landscape. In contrast, hammocks on islands embedded in long hydroperiod marsh have deeper, alkaline, mineral soils with extremely high P concentrations. However, this edaphic variation does not translate simply into differences in forest structure and production. Relative water depth was unrelated to all measures of forest structure and so was soil P, but the non-carbonate component of the mineral soil fraction exhibited a strong positive relationship with canopy height. The development of P-enriched forest resource islands in the Everglades marsh is accompanied by the buildup of a mineral soil; however, limitations on growth in mature islands appear to differ substantively from those that dominate incipient stages in the transformation from marsh to forest. Key words: resource island; tree

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.