23 resultados para Forensic toxicology.
em Digital Commons at Florida International University
Resumo:
New designer drugs are constantly emerging onto the illicit drug market and it is often difficult to validate and maintaincomprehensive analytical methods for accurate detection of these compounds. Generally, toxicology laboratories utilize a screening method, such as immunoassay, for the presumptive identification of drugs of abuse. When a positive result occurs, confirmatory methods, such as gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), are required for more sensitive and specific analyses. In recent years, the need to study the activities of these compounds in screening assays as well as to develop confirmatory techniques to detect them in biological specimens has been recognized. Severe intoxications and fatalities have been encountered with emerging designer drugs, presenting analytical challenges for detection and identification of such novel compounds. The first major task of this research was to evaluate the performance of commercially available immunoassays to determine if designer drugs were cross-reactive. The second major task was to develop and validate a confirmatory method, using LC-MS, to identify and quantify these designer drugs in biological specimens.^ Cross-reactivity towards the cathinone derivatives was found to be minimal. Several other phenethylamines demonstrated cross-reactivity at low concentrations, but results were consistent with those published by the assay manufacturer or as reported in the literature. Current immunoassay-based screening methods may not be ideal for presumptively identifying most designer drugs, including the "bath salts." For this reason, an LC-MS based confirmatory method was developed for 32 compounds, including eight cathinone derivatives, with limits of quantification in the range of 1-10 ng/mL. The method was fully validated for selectivity, matrix effects, stability, recovery, precision, and accuracy. In order to compare the screening and confirmatory techniques, several human specimens were analyzed to demonstrate the importance of using a specific analytical method, such as LC-MS, to detect designer drugs in serum as immunoassays lack cross-reactivity with the novel compounds. Overall, minimal cross-reactivity was observed, highlighting the conclusion that these presumptive screens cannot detect many of the designer drugs and that a confirmatory technique, such as the LC-MS, is required for the comprehensive forensic toxicological analysis of designer drugs.^
Resumo:
The volatile chemicals which comprise the odor of the illicit drug cocaine have been analyzed by adsorption onto activated charcoal followed by solvent elution and GC/MS analysis. A series of field tests have been performed to determine the dominant odor compound to which dogs alert. All of our data to date indicate that the dominant odor is due to the presence of methyl benzoate which is associated with the cocaine, rather than the cocaine itself. When methyl benzoate and cocaine are spiked onto U.S. currency, the threshold level of methyl benzoate required for a canine to signal an alert is typically 1-10 $\mu$g. Humans have been shown to have a sensitivity similar to dogs for methyl benzoate but with poorer selectivity/reliability. The dominant decomposition pathway for cocaine has been evaluated at elevated temperatures (up to 280$\sp\circ$C). Benzoic acid, but no detectable methyl benzoate, is formed. Solvent extraction and SFE were used to study the recovery of cocaine from U.S. currency. The amount of cocaine which could be recovered was found to decrease with time. ^
Resumo:
Cardiac troponin I (cTnI) is one of the most useful serum marker test for the determination of myocardial infarction (MI). The first commercial assay of cTnI was released for medical use in the United States and Europe in 1995. It is useful in determining if the source of chest pains, whose etiology may be unknown, is cardiac related. Cardiac TnI is released into the bloodstream following myocardial necrosis (cardiac cell death) as a result of an infarct (heart attack). In this research project the utility of cardiac troponin I as a potential marker for the determination of time of death is investigated. The approach of this research is not to investigate cTnI degradation in serum/plasma, but to investigate the proteolytic breakdown of this protein in heart tissue postmortem. If our hypothesis is correct, cTnI might show a distinctive temporal degradation profile after death. This temporal profile may have potential as a time of death marker in forensic medicine. The field of time of death markers has lagged behind the great advances in technology since the late 1850's. Today medical examiners are using rudimentary time of death markers that offer limited reliability in the medico-legal arena. Cardiac TnI must be stabilized in order to avoid further degradation by proteases in the extraction process. Chemically derivatized magnetic microparticles were covalently linked to anti-cTnI monoclonal antibodies. A charge capture approach was also used to eliminate the antibody from the magnetic microparticles given the negative charge on the microparticles. The magnetic microparticles were used to extract cTnI from heart tissue homogenate for further bio-analysis. Cardiac TnI was eluted from the beads with a buffer and analyzed. This technique exploits banding pattern on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by a western blot transfer to polyvinylidene fluoride (PVDF) paper for probing with anti-cTnI monoclonal antibodies. Bovine hearts were used as a model to establish the relationship of time of death and concentration/band-pattern given its homology to human cardiac TnI. The final concept feasibility was tested with human heart samples from cadavers with known time of death. ^
Resumo:
The investigations of human mitochondrial DNA (mtDNA) have considerably contributed to human evolution and migration. The Middle East is considered to be an essential geographic area for human migrations out of Africa since it is located at the crossroads of Africa, and the rest of the world. United Arab Emirates (UAE) population inhabits the eastern part of Arabian Peninsula and was investigated in this study. Published data of 18 populations were included in the statistical analysis. The diversity indices showed (1) high genetic distance among African populations and (2) high genetic distance between African populations and non-African populations. Asian populations clustered together in the NJ tree between the African and European populations. MtDNA haplotypes database of the UAE population was generated. By incorporating UAE mtDNA dataset into the existing worldwide mtDNA database, UAE Forensic Laboratories will be able to analyze future mtDNA evidence in a more significant and consistent manner. ^
Resumo:
The Internet has become an integral part of our nation’s critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a ‘distance metric’. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.
Resumo:
A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. ^ The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. ^ A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks. ^
Resumo:
There is limited scientific knowledge on the composition of human odor from different biological specimens and the effect that physiological and psychological health conditions could have on them. There is currently no direct comparison of the volatile organic compounds (VOCs) emanating from different biological specimens collected from healthy individuals as well as individuals with certain diagnosed medical conditions. Therefore the question of matching VOCs present in human odor across various biological samples and across health statuses remains unanswered. The main purpose of this study was to use analytical instrumental methods to compare the VOCs from different biological specimens from the same individual and to compare the populations evaluated in this project. The goals of this study were to utilize headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC/MS) to evaluate its potential for profiling VOCs from specimens collected using standard forensic and medical methods over three different populations: healthy group with no diagnosed medical or psychological condition, one group with diagnosed type 2 diabetes, and one group with diagnosed major depressive disorder. The pre-treatment methods of collection materials developed for the study allowed for the removal of targeted VOCs from the sampling kits prior to sampling, extraction and analysis. Optimized SPME-GC/MS conditions has been demonstrated to be capable of sampling, identifying and differentiating the VOCs present in the five biological specimens collected from different subjects and yielded excellent detection limits for the VOCs from buccal swab, breath, blood, and urine with average limits of detection of 8.3 ng. Visual, Spearman rank correlation, and PCA comparisons of the most abundant and frequent VOCs from each specimen demonstrated that each specimen has characteristic VOCs that allow them to be differentiated for both healthy and diseased individuals. Preliminary comparisons of VOC profiles of healthy individuals, patients with type 2 diabetes, and patients with major depressive disorder revealed compounds that could be used as potential biomarkers to differentiate between healthy and diseased individuals. Finally, a human biological specimen compound database has been created compiling the volatile compounds present in the emanations of human hand odor, oral fluids, breath, blood, and urine.
Resumo:
In the field of postmortem toxicology, principles from pharmacology and toxicology are combined in order to determine if exogenous substances contributed to ones death. In order to make this determination postmortem and (whenever available) antemortem blood samples may be analyzed. This project focused on evaluating the relationship between postmortem and antemortem blood drug levels, in order to better define an interpretive framework for postmortem toxicology. To do this, it was imperative to evaluate the differences in antemortem and postmortem drug concentrations, determine the role microbial activity and evaluate drug stability. Microbial studies determined that the bacteria Escherichia coli and Pseudomonas aeruginosa could use the carbon structures of drugs as a source of food. This would suggest prior to sample collection, microbial activity could potentially affect drug levels. This process however would stop before toxicologic evaluation, as at autopsy blood samples are stored in tubes containing the antimicrobial agent sodium fluoride. Analysis of preserved blood determined that under the current storage conditions sodium fluoride effectively inhibited microbial growth. Nonetheless, in many instances inconsistent drug concentrations were identified. When comparing antemortem to postmortem results, diphenhydramine, morphine, codeine and methadone, all showed significantly increased postmortem drug levels. In many instances, increased postmortem concentrations correlated with extended postmortem intervals. Other drugs, such as alprazolam, were likely to have concentration discrepancies when short antemortem to death intervals were coupled with extended postmortem intervals. While still others, such as midazolam followed the expected pattern of metabolism and elimination, which often resulted in decreased postmortem concentrations. The importance of drug stability was displayed when reviewing the clonazepam/ 7-aminoclonazepam data, as the parent drug commonly converted to its metabolite even when stored in the presence of a preservative. In instances of decreasing postmortem drug concentrations the effect of refrigerated storage could not be ruled out. A stability experiment, which contained codeine, produced data that indicated concentrations could continue to decline under the current storage conditions. The cumulative data gathered for this experiment was used to identify concentration trends, which subsequently aided in the development of interpretive considerations for the specific analytes examined in the study.
Resumo:
There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs. The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106. The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.
Resumo:
Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. ^ In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. ^ Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.^
Resumo:
Recreational abuse of the drugs cocaine, methamphetamine, and morphine continues to be prevalent in the United States of America and around the world. While numerous methods of detection exist for each drug, they are generally limited by the lifetime of the parent drug and its metabolites in the body. However, the covalent modification of endogenous proteins by these drugs of abuse may act as biomarkers of exposure and allow for extension of detection windows for these drugs beyond the lifetime of parent molecules or metabolites in the free fraction. Additionally, existence of covalently bound molecules arising from drug ingestion can offer insight into downstream toxicities associated with each of these drugs. This research investigated the metabolism of cocaine, methamphetamine, and morphine in common in vitro assay systems, specifically focusing on the generation of reactive intermediates and metabolites that have the potential to form covalent protein adducts. Results demonstrated the formation of covalent adduction products between biological cysteine thiols and reactive moieties on cocaine and morphine metabolites. Rigorous mass spectrometric analysis in conjunction with in vitro metabolic activation, pharmacogenetic reaction phenotyping, and computational modeling were utilized to characterize structures and mechanisms of formation for each resultant thiol adduction product. For cocaine, data collected demonstrated the formation of adduction products from a reactive arene epoxide intermediate, designating a novel metabolic pathway for cocaine. In the case of morphine, data expanded on known adduct-forming pathways using sensitive and selective analysis techniques, following the known reactive metabolite, morphinone, and a proposed novel metabolite, morphine quinone methide. Data collected in this study describe novel metabolic events for multiple important drugs of abuse, culminating in detection methods and mechanistic descriptors useful to both medical and forensic investigators when examining the toxicology associated with cocaine, methamphetamine, and morphine.
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.
Resumo:
The Internet has become an integral part of our nation's critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a 'distance metric'. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.