7 resultados para Forecasting, teleriscaldamento, metodi previsionali, Weka
em Digital Commons at Florida International University
Resumo:
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
Resumo:
Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.
Resumo:
Urban growth models have been used for decades to forecast urban development in metropolitan areas. Since the 1990s cellular automata, with simple computational rules and an explicitly spatial architecture, have been heavily utilized in this endeavor. One such cellular-automata-based model, SLEUTH, has been successfully applied around the world to better understand and forecast not only urban growth but also other forms of land-use and land-cover change, but like other models must be fed important information about which particular lands in the modeled area are available for development. Some of these lands are in categories for the purpose of excluding urban growth that are difficult to quantify since their function is dictated by policy. One such category includes voluntary differential assessment programs, whereby farmers agree not to develop their lands in exchange for significant tax breaks. Since they are voluntary, today’s excluded lands may be available for development at some point in the future. Mapping the shifting mosaic of parcels that are enrolled in such programs allows this information to be used in modeling and forecasting. In this study, we added information about California’s Williamson Act into SLEUTH’s excluded layer for Tulare County. Assumptions about the voluntary differential assessments were used to create a sophisticated excluded layer that was fed into SLEUTH’s urban growth forecasting routine. The results demonstrate not only a successful execution of this method but also yielded high goodness-of-fit metrics for both the calibration of enrollment termination as well as the urban growth modeling itself.
Resumo:
Background Type 2 diabetes mellitus (T2DM) is increasingly becoming a major public health problem worldwide. Estimating the future burden of diabetes is instrumental to guide the public health response to the epidemic. This study aims to project the prevalence of T2DM among adults in Syria over the period 2003–2022 by applying a modelling approach to the country’s own data. Methods Future prevalence of T2DM in Syria was estimated among adults aged 25 years and older for the period 2003–2022 using the IMPACT Diabetes Model (a discrete-state Markov model). Results According to our model, the prevalence of T2DM in Syria is projected to double in the period between 2003 and 2022 (from 10% to 21%). The projected increase in T2DM prevalence is higher in men (148%) than in women (93%). The increase in prevalence of T2DM is expected to be most marked in people younger than 55 years especially the 25–34 years age group. Conclusions The future projections of T2DM in Syria put it amongst countries with the highest levels of T2DM worldwide. It is estimated that by 2022 approximately a fifth of the Syrian population aged 25 years and older will have T2DM.
Resumo:
Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-for-time substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable.
Resumo:
Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-fortime substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable.
Resumo:
The purpose of this study is to adapt and combine the following methods of sales forecasting: Classical Time-Series Decomposition, Operationally Based Data and Judgmental Forecasting for use by military club managers.