2 resultados para Flavonoids.
em Digital Commons at Florida International University
Resumo:
Flavonoids are a class of over 6,500 plant metabolites that have been associated with reduced mortality from cardiovascular disease. A cross-sectional analysis of dietary flavonoids and serum cholesterol in 507 Blacks with and without type 2 diabetes (258 Haitian-Americans and 249 African-Americans) showed differences by ethnicity and diabetes status. Haitian-Americans consumed more of most flavonoids as compared to African-Americans. Individuals with type 2 diabetes consumed less of most flavonoids as compared to those without diabetes. Flavonoids were differentially associated with low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) by diabetes status. Flavanones were associated with lower LDL for participants without diabetes and higher LDL for those with diabetes, independent of ethnicity and adjusted for age, gender, cholesterol medications, daily energy, dietary fat, body mass index (BMI), and smoking. Flavan-3-ols were positively related to LDL while polyflavonoids (theaflavin and polymers, proanthocyanidins) were inversely related to LDL for the group without diabetes only. Higher anthocyanidins and flavan-3-ols and lower polyflavonoids were associated with higher HDL (same adjustments) for those without diabetes, whereas no flavonoids were associated with HDL for individuals with type 2 diabetes.
Resumo:
Strelitziaceae is a tropical monocot family comprising three genera and seven species: Ravenala Adans and Phenkospermum Endl., which are monotypic, and five species of Strelitzia Aiton. All species produce woody capsular fruits that contain vibrantly colored arillate seeds. Arils of the Strelitzia species are orange, those of Phenakospermum are red, and those of Ravenala are blue. Unlike most plant pigments, which degrade after cell death, aril pigments in the family persist for decades. Chemical properties of the compounds are unusual, and do not match those of known pigment classes (carotenoids, flavonoids, betalains, and the chlorophylls). I isolated the orange pigment from the arils of Strelitzia nicolai, and performed HPLC-ESMS, UV-visible, 1H NMR and 13C NMR analyses to determine its chemical structure. These data indicated the pigment was bilirubin-IX, an orange-yellow tetrapyrrole previously known only in mammals and some other vertebrates as the breakdown product of heme. Although related tetrapyrroles are ubiquitous throughout the plant kingdom and include vital biosynthetic products such as chlorophyll and phytochromobilin, this is the first report of bilirubin in a plant, and evidence of an additional biosynthetic pathway producing orange coloration in flowers and fruits. ^ Given the unexpected presence of bilirubin, Iexamined the fruits and flowers of twelve additional angiosperm species in diverse orders for the presence of bilirubin using HPLC and LC-MS. Bilirubin was present in ten species from the orders Zingiberales, Arecales, and Myrtales, indicating its wide distribution in the plant kingdom. Bilirubin was present in low concentrations in all species except those within Strelitziaceae. It was present in particularly high concentrations in S. nicolai, S. reginae and P. guyannense, and is thus responsible for producing color in these species. ^ No studies have examined the evolutionary relationship among all species in the family. Thus, I also constructed a molecular phylogeny of the family. This information, combined with further studies on the distribution and synthesis of bilirubin in plants, will provide a basis for understanding the evolutionary history of this pigment in the plant kingdom.^