6 resultados para Flash

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Storage is a central part of computing. Driven by exponentially increasing content generation rate and a widening performance gap between memory and secondary storage, researchers are in the perennial quest to push for further innovation. This has resulted in novel ways to "squeeze" more capacity and performance out of current and emerging storage technology. Adding intelligence and leveraging new types of storage devices has opened the door to a whole new class of optimizations to save cost, improve performance, and reduce energy consumption. In this dissertation, we first develop, analyze, and evaluate three storage extensions. Our first extension tracks application access patterns and writes data in the way individual applications most commonly access it to benefit from the sequential throughput of disks. Our second extension uses a lower power flash device as a cache to save energy and turn off the disk during idle periods. Our third extension is designed to leverage the characteristics of both disks and solid state devices by placing data in the most appropriate device to improve performance and save power. In developing these systems, we learned that extending the storage stack is a complex process. Implementing new ideas incurs a prolonged and cumbersome development process and requires developers to have advanced knowledge of the entire system to ensure that extensions accomplish their goal without compromising data recoverability. Futhermore, storage administrators are often reluctant to deploy specific storage extensions without understanding how they interact with other extensions and if the extension ultimately achieves the intended goal. We address these challenges by using a combination of approaches. First, we simplify the storage extension development process with system-level infrastructure that implements core functionality commonly needed for storage extension development. Second, we develop a formal theory to assist administrators deploy storage extensions while guaranteeing that the given high level goals are satisfied. There are, however, some cases for which our theory is inconclusive. For such scenarios we present an experimental methodology that allows administrators to pick an extension that performs best for a given workload. Our evaluation demostrates the benefits of both the infrastructure and the formal theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memory (cache, DRAM, and disk) is in charge of providing data and instructions to a computer's processor. In order to maximize performance, the speeds of the memory and the processor should be equal. However, using memory that always match the speed of the processor is prohibitively expensive. Computer hardware designers have managed to drastically lower the cost of the system with the use of memory caches by sacrificing some performance. A cache is a small piece of fast memory that stores popular data so it can be accessed faster. Modern computers have evolved into a hierarchy of caches, where a memory level is the cache for a larger and slower memory level immediately below it. Thus, by using caches, manufacturers are able to store terabytes of data at the cost of cheapest memory while achieving speeds close to the speed of the fastest one.^ The most important decision about managing a cache is what data to store in it. Failing to make good decisions can lead to performance overheads and over-provisioning. Surprisingly, caches choose data to store based on policies that have not changed in principle for decades. However, computing paradigms have changed radically leading to two noticeably different trends. First, caches are now consolidated across hundreds to even thousands of processes. And second, caching is being employed at new levels of the storage hierarchy due to the availability of high-performance flash-based persistent media. This brings four problems. First, as the workloads sharing a cache increase, it is more likely that they contain duplicated data. Second, consolidation creates contention for caches, and if not managed carefully, it translates to wasted space and sub-optimal performance. Third, as contented caches are shared by more workloads, administrators need to carefully estimate specific per-workload requirements across the entire memory hierarchy in order to meet per-workload performance goals. And finally, current cache write policies are unable to simultaneously provide performance and consistency guarantees for the new levels of the storage hierarchy.^ We addressed these problems by modeling their impact and by proposing solutions for each of them. First, we measured and modeled the amount of duplication at the buffer cache level and contention in real production systems. Second, we created a unified model of workload cache usage under contention to be used by administrators for provisioning, or by process schedulers to decide what processes to run together. Third, we proposed methods for removing cache duplication and to eliminate wasted space because of contention for space. And finally, we proposed a technique to improve the consistency guarantees of write-back caches while preserving their performance benefits.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change has been a security issue for mankind since Homo sapiens first emerged on the planet, driving him to find new and better food, water, shelter, and basic resources for survival and the advancement of civilization. Only recently, however, has the rate of climate change coupled with man’s knowledge of his own role in that change accelerated, perhaps profoundly, changing the security paradigm. If we take a ―decades‖ look at the security issue, we see competition for natural resources giving way to Cold War ideological containment and deterrence, itself giving way to non-state terrorism and extremism. While we continue to defend against these threats, we are faced with even greater security challenges that inextricably tie economic, food and human security together and where the flash points may not provide clearly discernable causes, as they will be intrinsically tied to climate change. Several scientific reports have revealed that the modest development gains that can be realized by some regions could be reversed by climate change. This means that climate change is not just a long-term environmental threat as was widely believed, but an economic and developmental disaster that is unfolding. As such, addressing climate change has become central to the development and poverty reduction by the World Bank and other financial institutions. In Latin America, poorer countries and communities, such as those found in Central America, will suffer the hardest because of weaker resilience and greater reliance on climatesensitive sectors such as agriculture. The US should attempt to deliver capability to assist these states to deal with the effects of climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Panel discussion held at the College of Business Complex Room 152 at the Modesto Maidique Campus hosted by Florida International University on the subject of Facebook's IPO (initial public offering). FIU experts on the panel included: Bogdan Carbunar, professor in the College of Engineering and Computing Science Rosanna Fiske, associate professor in the School of Journalism and Mass Communication Raul Reis, dean of the School of Journalism and Mass Communication Helen Simon, director of the State Farm Financial Literacy Lab and senior instructor in the College of Business Administration Hannibal Travis, associate professor in the College of Law Patrick O'Leary, Executive Associate Dean for Clinical Affairs at FIU's Herbert Wertheim College of Medicine Moderated by Miami Herald Business Editor Jane Wooldridge