5 resultados para Fish production
em Digital Commons at Florida International University
Resumo:
Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.
Resumo:
Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.
Resumo:
In the Everglades, the majority of fish detrital inputs occur during the dry scason, when waterlevel drawdown reduces aquatic habitat. While these mortality events are highly seasonal, the remineralization and recycling of fish detrital nutrients may represent an important stimulus to the ecosystem in the following wet season. The goal of this study was to quantify the rate of detrital fish decomposition during three periods of the year to determine seasonal variations in decomposition patterns in this ecosystem. A multiple regression analysis showed that hydroperiod and water depth both played a role in determining fish decomposition rates within this ecosystem. Decomposition rates ranged from a low of 13% day−1 in December 2000 to a high of 50% day−1 in April 2001, the height of the dry season. Phosphorus analysis showed that Gambusia holbrooki, the dominant small fish species in the Everglades, contains 7.169±1.46 mg P g−1 wet fish weight. Based on the observed decomposition rates and the average biomass added, the estimafed daily flux of phosphorus from the experimental detrital loading ranged from a low of 27.04 mg P day−1 to a high of 108.14 mg P day−1 during the decomposition period. We estimated that these inputs could represent an input of 43 μg P m−2 day−1 to the total temporal Everglades phosphorus budget. Although much of this phosphorus is likely incorporated into the macroinvertebrate pool, detrital inputs peak during the dry season when nutrients are most likely to be incorporated into the soil and occur when decomposition of vegetative material is moisture-limited. These inputs may therefore play an important role in stimulating vegetative production during the early wet season.
Resumo:
In the tropical and subtropical wet and dry regions, maintaining natural hydrologic connections between coastal rivers and adjacent ephemeral wetlands is critical to conserving and sustaining high levels of fisheries production within these systems. Though there is a consensus that there is a need to maintain these natural connections, little is known about what attributes of floodplain inundation regimes are most important in sustaining fisheries production. Two attributes of the flood season and thus floodplain inundation that may be particularly influential to fisheries are the amplitude of the flood season (floodplain water depth and spatial extent of inundation) and the duration of the flood season (i.e., time floodplains are inundated). In mangrove-dominated Everglades coastal rivers, seasonal inundation of upstream marsh floodplains may play an important role in provisioning recreational fisheries; however, this relationship remains unknown. Using two Everglades coastal river fisheries as a model, we tested whether the amplitude of the flood season or the duration of the flood season is more important in explaining variation in angler catch records of common snook and largemouth bass collected from 1992 to 2012. We validated angler catches with fisheries-independent electrofishing conducted in the same region from 2004 to 2012. Our results showed (1) that bass angler catches tracked electrofishing catches, while snook catches were completely mismatched. And (2) that previous year's marsh dynamics, particularly the duration of the flood season, was more influential than the flood season amplitude in explaining variation in bass catches, such that bass angler catches were negatively correlated to the period time that floodplains remained disconnected from coastal rivers in the previous year, while snook catches were not very well explained by floodplain inundation terms.
Resumo:
Short-hydroperiod Everglades wetlands have been disproportionately affected by reductions in freshwater inflows, land conversion and biotic invasions. Severe hydroperiod reductions in these habitats, including the Rocky Glades, coupled with proximity to canals that act as sources of invasions, may limit their ability to support high levels of aquatic production. We examined whether karst solution holes function as dry-down refuges for fishes, providing a source of marsh colonists upon reflooding, by tracking fish abundance, nonnative composition, and survival in solution holes throughout the dry season. We paired field surveys with an in situ nonnative predation experiment that tested the effects of predation by the recent invader, African jewelfish (Hemichromis letourneuxi) on native fishes. Over the 3 years surveyed, a large number of the solution holes dried before the onset of the wet season, while those retaining water had low survivorship and were dominated by nonnatives. In the experiment, mortality of eastern mosquitofish (Gambusia holbrooki) in the presence of African jewelfish was greater than that associated with deteriorating water quality. Under current water management, findings suggest that solution holes are largely sinks for native fishes, given the high frequency of drydown, extensive period of fish residence, and predation by nonnative fishes.