8 resultados para Fine root

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patterns of mangrove vegetation in two distinct basins of Florida Coastal Everglades (FCE), Shark River estuary and Taylor River Slough, represent unique opportunities to test hypotheses that root dynamics respond to gradients of resources, regulators, and hydroperiod. We propose that soil total phosphorus (P) gradients in these two coastal basins of FCE cause specific patterns in belowground biomass allocation and net primary productivity that facilitate nutrient acquisition, but also minimize stress from regulators and hydroperiod in flooded soil conditions. Shark River basin has higher P and tidal hydrology with riverine mangroves, in contrast to scrub mangroves of Taylor basin with more permanent flooding and lower P across the coastal landscape. Belowground biomass (0–90 cm) of mangrove sites in Shark River and Taylor River basins ranged from 2317 to 4673 g m-2, with the highest contribution (62–85%) of roots in the shallow root zone (0–45 cm) compared to the deeper root zone (45–90 cm). Total root productivity did not vary significantly among sites and ranged from 407 to 643 g m-2 y-1. Root production in the shallow root zone accounted for 57–78% of total production. Root turnover rates ranged from 0.04 to 0.60 y-1 and consistently decreased as the root size class distribution increased from fine to coarse roots, indicating differences in root longevity. Fine root biomass was negatively correlated with soil P density and frequency of inundation, whereas fine root turnover decreased with increasing soil N:P ratios. Lower P availability in Taylor River basin relative to Shark River basin, along with higher regulator and hydroperiod stress, confirms our hypothesis that interactions of stress from resource limitation and long duration of hydroperiod account for higher fine root biomass along with lower fine root production and turnover. Because fine root production and organic matter accumulation are the primary processes controlling soil formation and accretion in scrub mangrove forests, root dynamics in the P-limited carbonate ecosystem of south Florida have a major controlling role as to how mangroves respond to future impacts of sealevel rise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soils play a central role in the dynamics of biospheric carbon and in climate change. They contain the largest carbon stock of terrestrial ecosystems and return to the atmosphere a significant proportion of carbon fixed by photosynthesis. Soils of tropical forests are tremendously important in the carbon cycle because they receive the largest organic matter inputs, they have the largest respiration rates, and they are among the largest carbon reservoirs among world soils. This research assesses the main components of the soil carbon dynamics in primary (PF) and secondary (SF) tropical forests in Colombia. I evaluated the production, stocks, and decomposition rates of aboveground detritus as well as the stocks, growth, mortality, and decomposition of fine roots in these two forest types. Soil carbon outputs were evaluated as total soil, heterotrophic, and root respiration. The stocks of soil organic carbon down to 4 m deep in these two cover types and in degraded pastures (PAS) were also evaluated. ^ Soil inputs of organic carbon from above and belowground sources were lower in SF than in PF. Litterfall in SF was 58% and production of fine root detritus was 60% of that in PF. When production of woody detritus and palm fronds was considered, the difference between these forest types was even larger. However, outputs of mineral carbon through heterotrophic soil respiration were similar; in SF they equaled 97% of those in PF. As a result, soil carbon balance was positive in PF and negative in SF. Despite that soil carbon balances suggest that soils of SF are losing carbon, soil carbon stocks of SF were higher than of degraded pastures, suggesting that they have already started to recover soil carbon stocks lost under degraded pastures. This discrepancy can be partially explained by the effect of drier conditions on heterotrophic soil respiration as a consequence of a moderate El Niño event during the period of soil respiration measurements. The positive carbon balance in soils of PF despite the El Niño event, suggests that soils of PF accumulated about 664 Kg C ha−1 yr−1. Therefore, soil carbon dynamics mainly depended on successional status of vegetation and on climatic conditions. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mangrove root decomposition rates were measured by distributing mesh bags containing fine root material across six sites with different soil fertility and hydroperiod to compare ambient differences to substrate quality. Roots from a site with lower soil phosphorus concentration were used as a reference and compared to ambient roots at five other sites with increased phosphorus concentration. Four mesh bags of each root type (ambient versus reference), separated into four 10-cm replicate intervals, were buried up to 42 cm depth at each site and incubated for 250 d (initiation in May 2004). Mass loss of ambient mangrove roots was significant at all study sites and ranged from 17% to 54%; there was no significant difference with depth at any one site. Reference decomposition constants (−k) ranged from 0.0012 to 0.0018 d−1 among Taylor Slough sites compared to 0.0023–0.0028 d−1 among Shark River sites, indicating slower decomposition rates associated with lower soil phosphorous and longer flood duration. Reference roots had similar decomposition rates as ambient roots in four of the six sites, and there were no significant correlations between indices of root substrate quality and decomposition rates. Among these distinct landscape gradients of south Florida mangroves, soil environmental conditions have a greater effect on belowground root decomposition than root substrate quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.