4 resultados para Field expanded Arts Architecture
em Digital Commons at Florida International University
Resumo:
• Premise of the study: Species in the aquatic genus Nymphoides have inflorescences that appear to arise from the petioles of floating leaves. The inflorescence-floating leaf complex can produce vegetative propagules and/or additional inflorescences and leaves. We analyzed the morphology of N. aquatica to determine how this complex relates to whole plant architecture and whether whole plant growth is sympodial or monopodial. • Methods: We used dissections, measurements, and microscopic observations of field-collected plants and plants cultivated for 2 years in outdoor tanks in south Florida, USA. • Key results: Nymphoides aquatica had a submerged plagiotropic rhizome that produced floating leaves in an alternate/spiral phyllotaxy. Rhizomes were composed of successive sympodial units that varied in the number of leaves produced before the apex terminated. The basic sympodial unit had a prophyll that subtended a renewal-shoot bud, a short-petioled leaf (SPL) with floating lamina, and an inflorescence; the SPL axillary bud expanded as a vegetative propagule. Plants produced either successive basic sympodial units or expanded sympodia that intercalated long-petioled leaves between the prophyll and the SPL. • Conclusions: Nymphoides aquatica grows sympodially, forming a rhizome composed of successive basic sympodia and expanded sympodial units. Variations on these types of sympodial growth help explain the branching patterns and leaf morphologies described for other Nymphoides species. Monitoring how these two sympodial phases are affected by water depth provides an ecologically meaningful way to assess N. aquatica’s responses to altered hydrology.
Resumo:
Lecture given by Dr. John Stuart, Professor of Architecture and Department Chair of Architecture and the Arts at Florida International University. This lecture focuses on the aesthetics of edifices. Event held on April 18, 2012 at the Green Library, Modesto Maidique Campus, Florida International University.
Resumo:
Eleocharis cellulosa is a dominant macrophyte in Everglades wet prairie communities. The development of the shoot system in the genus has been described as sympodial but with an unusual adnation of the horizontal and vertical shoots. The growth pattern of E. cellulosa was studied from field collected plants and plants grown in the greenhouse. Plants were extracted and measurements of horizontal and vertical shoot were taken. Dissections, paraffin sectioning and SEM's were used to examine shoot structure in early developmental stages. E. cellulosa was transplanted from the field to the greenhouse and different levels of Nitrogen and Phosphorus were added to determine how it responded phenotypically. Dissections and microscopy showed that growth of the vertical shoots of E. cellulosa is sympodial, while growth of the horizontal shoots is mixed, beginning monopodially then transforming to sympodial growth. Additions of nutrients did not have any effect on the morphology of E. cellulosa.
Resumo:
The purpose of this study was to examine the factorsbehind the failure rates of Associate in Arts (AA)graduates from Miami-Dade Community College (M-DCC) transferring to the Florida State University System (SUS). In M-DCC's largest disciplines, the university failure rate was 13% for Business & Management, 13% for Computer Science, and 14% for Engineering. Hypotheses tested were: Hypothesis 1 (H1): The lower division (LD) overall cumulative GPA and/or the LD major field GPA for AA graduates are predictive of the SUS GPA for the Business Management, Computer Science, and Engineering disciplines. Hypothesis 2 (H2): Demographic variables (age, race, gender) are predictive of performance at the university among M-DCC AA graduates in Engineering, Business & Management, and Computer Science. Hypothesis 3 (H3): Administrative variables (CLAST -College Level Academic Skills Test subtests) are predictive of university performance (GPA) for the Business/Management, Engineering, and Computer Science disciplines. Hypothesis 4 (H4): LD curriculum variables (course credits, course quality points) are predictive of SUS performance for the Engineering, Business/Management and Computer Science disciplines. Multiple Regression was the inferential procedureselected for predictions. Descriptive statistics weregenerated on the predictors. Results for H1 identified the LD GPA as the most significant variable in accounting for the variability of the university GPA for the Business & Management, Computer Science, and Engineering disciplines. For H2, no significant results were obtained for theage and gender variables, but the ethnic subgroups indicated significance at the .0001 level. However, differentials in GPA may not have been due directly to the race factor but, rather, to curriculum choices and performance outcomes while in the LD. The CLAST computation variable (H3) was a significant predictor of the SUS GPA. This is most likely due to the mathematics structure pervasive in these disciplines. For H4, there were two curriculum variables significant in explaining the variability of the university GPA (number of required critical major credits completed and quality of the student's performance for these credits). Descriptive statistics on the predictors indicated that 78% of those failing in the State University System had a LD major GPA (calculated with the critical required university credits earned and quality points of these credits) of less than 3.0; and 83% of those failing at the university had an overall community college GPA of less than 3.0.