3 resultados para Ferric ferrocyanide
em Digital Commons at Florida International University
Resumo:
Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. ^ To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. ^ To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O 2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.^
Resumo:
Antibiotic resistance has become an important area of research because of the excessive use of antibiotics in clinical and agricultural settings that are driving the evolution of antibiotic resistant bacteria. However, drug tolerance is a naturally occurring phenomenon in soil communities, and is often linked to those soils that are exposed to heavy metals as well as antibiotics. Resistance to antibiotics maybe coupled with resistance to heavy metals in soil bacteria through efflux pumps that can be regulated by iron. Although considered s a heavy metal, iron is an essential component of life that regulates gene expression through the Ferric Uptake Regulator (Fur) protein. This master regulator protein is known to control siderophore production, and other biological pathways. As a suspected controller of biofilm formation, the role of Fur in environmental antibiotic resistance may be greater than is currently realized. In this study, we sought to explore a potential Fur-regulated drug tolerance pathway by understanding the response of soil bacteria when stressed with oxytetracycline and iron. Bacteria were collected from two locations in Miami Dade County. Isolates were first tested using Kirby-Bauer Disk Diffusion tests for antibiotic resistance/susceptibility and identified by 16S rDNA sequencing. A 96-well growth assay was developed to measure planktonic cell growth with 3 mM FeCl3, Oxytetracycline HCl, and the combination treatments. A Microtiter Dish Biofilm Formation Assay was employed and Fur diversity was evaluated. Tetracycline-susceptible bacterial isolates developed drug resistance with iron supplementation, but iron did not enhance biofilm formation. Development of a Fur-dependent drug resistance may be selected for, but further study is required to evaluate Fur evolution in the studied isolates. Gene expression analysis is also needed to further understand the ecological role of Fur and antibiotic resistance.
Resumo:
Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.