6 resultados para Federal Energy Management Program (U.S.)
em Digital Commons at Florida International University
Resumo:
Governmental accountability is the requirement of government entities to be accountable to the citizenry in order to justify the raising and expenditure of public resources. The concept of service efforts and accomplishments measurement for government programs was introduced by the Governmental Accounting Standards Board (GASB) in Service Efforts and Accomplishments Reporting: Its Time Has Come (1990). This research tested the feasibility of implementing the concept for the Federal-aid highway construction program and identified factors affecting implementation with a case study of the District of Columbia. Changes in condition and performance ratings for specific highway segments in 15 projects, before and after construction expenditures, were evaluated using data provided by the Federal Highway Administration. The results of the evaluation indicated difficulty in drawing conclusions on the state program performance, as a whole. The state program reflects problems within the Federally administered program that severely limit implementation of outcome-oriented performance measurement. Major problems identified with data acquisition are: data reliability, availability, compatibility and consistency among states. Other significant factors affecting implementation are institutional barriers and political barriers. Institutional issues in the Federal Highway Administration include the lack of integration of the fiscal project specific database with the Highway Performance Monitoring System database. The Federal Highway Administration has the ability to resolve both of the data problems, however interviews with key Federal informants indicate this will not occur without external directives and changes to the Federal “stewardship” approach to program administration. ^ The findings indicate many issues must be resolved for successful implementation of outcome-oriented performance measures in the Federal-aid construction program. The issues are organizational and political in nature, however in the current environment resolution is possible. Additional research is desirable and would be useful in overcoming the obstacles to successful implementation. ^
Resumo:
National park managers are the subjects in the fifth segment of a study examining the skills and abilities needed to be successful tourism managers. The authors discuss these skills and their impact on successful tourism management.
Resumo:
Chronic disease affects 80% of adults over the age of 65 and is expected to increase in prevalence. To address the burden of chronic disease, self-management programs have been developed to increase self-efficacy and improve quality of life by reducing or halting disease symptoms. Two programs that have been developed to address chronic disease are the Chronic Disease Self-Management Program (CDSMP) and Tomando Control de su Salud (TCDS). CDSMP and TCDS both focus on improving participant self-efficacy, but use different curricula, as TCDS is culturally tailored for the Hispanic population. Few studies have evaluated the effectiveness of CDSMP and TCDS when translated to community settings. In addition, little is known about the correlation between demographic, baseline health status, and psychosocial factors and completion of either CDSMP or TCDS. This study used secondary data collected by agencies of the Healthy Aging Regional Collaborative from 10/01/2008–12/31/2010. The aims of this study were to examine six week differences in self-efficacy, time spent performing physical activity, and social/role activity limitations, and to identify correlates of program completion using baseline demographic and psychosocial factors. To examine if differences existed a general linear model was used. Additionally, logistic regression was used to examine correlates of program completion. Study findings show that all measures showed improvement at week six. For CDSMP, self-efficacy to manage disease (p = .001), self-efficacy to manage emotions (p = .026), social/role activities limitations (p = .001), and time spent walking (p = .008) were statistically significant. For TCDS, self-efficacy to manage disease (p = .006), social/role activities limitations (p = .001), and time spent walking (p = .016) and performing other aerobic activity (p = .005) were significant. For CDSMP, no correlates predicting program completion were found to be significant. For TCDS, participants who were male (OR=2.3, 95%CI: 1.15–4.66), from Broward County (OR=2.3, 95%CI: 1.27–4.25), or living alone (OR=2.0, 95%CI: 1.29-–3.08) were more likely to complete the program. CDSMP and TCDS, when implemented through a collaborative effort, can result in improvements for participants. Effective chronic disease management can improve health, quality of life, and reduce health care expenditures among older adults.
Resumo:
E=MC³ Energy Equals Management's Continued Cost Concern, is an essay written by Fritz G. Hagenmeyer, Associate Professor, School of Hospitality Management at Florida International University. In the writing, Hagenmeyer initially tenders: “Energy problems in the hospitality industry can be contained or reduced, yielding elevated profits as a result of applied, quality management principles. The concepts, processes and procedures presented in this article are intended to aid present and future managers to become more effective with a sharpened focus on profitability.” This article is an overview of energy efficiency and the management of such. In an expanding energy consumption market with its escalating costs, energy management has become an ever increasing concern and component of responsible hospitality management, Hagenmeyer will have you know. “In endeavoring to "manage" on a day-to-day basis a functioning hospitality building's energy system, the person in charge must take on the role of Justice with her scales, attempting to balance the often varying comfort needs of guests and occupants with the invariable rising costs of energy utilized to generate and maintain such comfort conditions, since comfort is seen as an integral part of the "service," "product," or "price/value” perception of patrons,” says Hagenmeyer. In contrast to what was thought in the mid point of this century - that energy would be abundant and cheap - the reality has set-in that this is not the case; not by a long shot. The author wants you to be aware that energy costs in buildings are a force to be reckoned with; a major expense to be sure. “Since 1973, "energy-conscious design" has begun to become part of the repertoire of architects, design engineers, and construction companies,” Hagenmeyer states. “For instance, whereas office buildings of the early 1970s might have used 400,000 British Thermal Units (BTUs) per square foot year, new buildings are going up that use 55,000 to 65,000 BTUs per square foot year,” Hagenmeyer, like an incandescent bulb, illuminates you. Hagenmeyer references Robert E. Aulbach’s article - Energy Management – when informing you that the hospitality manager should not become complacent in addressing the energy cost issue, but should and must maintain a diligent focus on the problem. Hagenmeyer also makes reference to the Middle East War and to OPEC, and their influence on energy prices. In closing, Hagenmeyer suggests an - Energy Management Action Plan – which he outlines for you.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^