3 resultados para Feature Selection
em Digital Commons at Florida International University
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
Due to the rapid advances in computing and sensing technologies, enormous amounts of data are being generated everyday in various applications. The integration of data mining and data visualization has been widely used to analyze these massive and complex data sets to discover hidden patterns. For both data mining and visualization to be effective, it is important to include the visualization techniques in the mining process and to generate the discovered patterns for a more comprehensive visual view. In this dissertation, four related problems: dimensionality reduction for visualizing high dimensional datasets, visualization-based clustering evaluation, interactive document mining, and multiple clusterings exploration are studied to explore the integration of data mining and data visualization. In particular, we 1) propose an efficient feature selection method (reliefF + mRMR) for preprocessing high dimensional datasets; 2) present DClusterE to integrate cluster validation with user interaction and provide rich visualization tools for users to examine document clustering results from multiple perspectives; 3) design two interactive document summarization systems to involve users efforts and generate customized summaries from 2D sentence layouts; and 4) propose a new framework which organizes the different input clusterings into a hierarchical tree structure and allows for interactive exploration of multiple clustering solutions.
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.