13 resultados para Fauna - Autotoxaemia - Experimental studies

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerospace turboengines present a demanding challenge to many heat transfer scientists and engineers. Designers in this field are seeking the best design to transform the chemical energy of the fuel into the useful work of propulsive thrust at maximum efficiency. To this aim, aerospace turboengines must operate at very high temperatures and pressures with very little heat losses. These requirements are often in conflict with the ability to protect the turboengine blades from this hostile thermal environment. Heat pipe technology provides a potential cooling means for the structure exposed to high heat fluxes. Therefore, the objective of this dissertation is to develop a new radially rotating miniature heat pipe, which would combine the traditional air-cooling technology with the heat pipe for more effective turboengine blade cooling. ^ In this dissertation, radially rotating miniature heat pipes are analyzed and studied by employing appropriate flow and heat transfer modeling as well as experimental tests. The analytical solutions for the flows of condensate film and vapor, film thickness, and vapor temperature distribution along the heat pipe length are derived. The diffuse effects of non-condensable gases on the temperature distribution along the heat pipe length are also studied, and the analytical solutions for the temperature distributions with the diffuse effects of non-condensable gases are obtained. Extensive experimental tests on radially rotating miniature heat pipes with different influential parameters are undertaken, and various effects of these parameters on the operation of the heat pipe performance are researched. These analytical solutions are in good agreement with the experimental data. ^ The theoretical and experimental studies have proven that the radially rotating miniature heat pipe has a very large heat transfer capability and a very high effective thermal conductance that is 60–100 times higher than the thermal conductivity of copper. At the same time, the heat pipe has a simple structure and low manufacturing cost, and can withstand strong vibrations and work in a high-temperature environment. Therefore, the combination of the traditional air-cooling technology with the radially rotating miniature heat pipe is a feasible and effective cooling means for high-temperature turbine blades. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. ^ In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. ^ These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. ^ Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. ^ Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. ^ The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. ^ Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ∼20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum measurements and quantum photonic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eutrophication from anthropogenic nutrient enrichment is a primary threat to the oligotrophic freshwater marshes of southern Florida. Macrophyte and periphyton response to increased phosphorus (P) has been well documented in both correlative and experimental studies, but the response of consumer communities remains poorly understood, especially in southern marl prairies. We conducted a P-loading experiment in in situ mesocosms in Taylor Slough, Everglades National Park, and examined the response of macroinvertebrate communities. Mesocosms at two sites were loaded weekly with P at four levels: control (0 g P/m2/yr), low (0.2 g P/m2/yr), intermediate (0.8 g P/m2/yr), and high (3.2 g P/m2/ yr). After ∼2 yrs of P-loading, macroinvertebrates were sampled using periphyton mat and benthic floc cores. Densities of macroinvertebrate taxa (no./g AFDM) were two to 16 times higher in periphyton mats than benthic floc. Periphyton biomass decreased with enrichment at one site, and periphyton was absent from many intermediate and all high P treatments at both sites. Total macroinvertebrate density in periphyton mats increased with intermediate P loads, driven primarily by chironomids and nematodes. Conversely, total macroinvertebrate density in benthic floc decreased with enrichment, driven primarily by loss of chironomids and ceratopogonids (Dasyhelea). This study suggests that macroinvertebrate density increases with enrichment until periphyton mats are lost, after which it decreases, and mat infauna fail to move into benthic substrates in response to mat loss. These results were noted at nutrient levels too low to yield anoxia, and we believe that the decrease of macroinvertebrate density resulted from a loss of habitat. This work illustrates the importance of periphyton mats as habitat for macroinvertebrates in the Everglades. This study also indicates that in this system, macroinvertebrate sampling should be designed to target periphyton mats or conducted with special attention to inclusion of substrates relative to their coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile crime is a social problem of increasing concern to many citizens in the United States. In 2000, there were an estimated 2.4 million juvenile arrests for a variety of crimes ranging from misdemeanors to violent felony offenses. African American males are disproportionately represented among juvenile offenders in the United States. In 2000, black youth were approximately 16% of the U.S. population between the ages of 10–17; however, they accounted for 42% of juvenile arrests for violent crime. ^ This study explored putative factors associated with juvenile offending among a sample of African American adolescent males. The independent variables in this study were academic achievement, religiosity, parenting styles and discrimination. The dependent variables were delinquent behavior and arrest. The data used in this study were from a larger NIDA funded longitudinal study that included approximately 425 African American youths. The data collection method involved structured interviews and questionnaires. The participants for the original study were selected via random sampling from all students attending middle school in Miami-Dade County. The study examined the hypotheses that African American males retrospectively reporting (a) high academic achievement, (b) high religiosity, (c) authoritarian parenting and (d) low perceptions of discrimination are less likely to be involved in delinquent behavior and are also less likely to be arrested. ^ Results indicated that among African American adolescent males, delinquent behavior had a significant relationship (p < .05) with academic achievement, perceived discrimination and the interaction between perceived discrimination and experienced discrimination. Arrest was significantly related to academic achievement (p < .001), religious perception (p < .05), and church attendance (p < 05). Neither dependent variable was significantly related to parenting styles. ^ The findings indicated that experimental studies are needed to clarify cause and effect relationship among the variables associated with juvenile offending among African American males, which may differ from those associated with juvenile offending among other groups. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotope analysis has become a standard ecological tool for elucidating feeding relationships of organisms and determining food web structure and connectivity. There remain important questions concerning rates at which stable isotope values are incorporated into tissues (turnover rates) and the change in isotope value between a tissue and a food source (discrimination values). These gaps in our understanding necessitate experimental studies to adequately interpret field data. Tissue turnover rates and discrimination values vary among species and have been investigated in a broad array of taxa. However, little attention has been paid to ectothermic top predators in this regard. We quantified the turnover rates and discrimination values for three tissues (scutes, red blood cells, and plasma) in American alligators (Alligator mississippiensis). Plasma turned over faster than scutes or red blood cells, but turnover rates of all three tissues were very slow in comparison to those in endothermic species. Alligator δ15N discrimination values were surprisingly low in comparison to those of other top predators and varied between experimental and control alligators. The variability of δ15N discrimination values highlights the difficulties in using δ15N to assign absolute and possibly even relative trophic levels in field studies. Our results suggest that interpreting stable isotope data based on parameter estimates from other species can be problematic and that large ectothermic tetrapod tissues may be characterized by unique stable isotope dynamics relative to species occupying lower trophic levels and endothermic tetrapods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile crime is a social problem of increasing concern to many citizens in the United States. In 2000, there were an estimated 2.4 million juvenile arrests for a variety of crimes ranging from misdemeanors to violent felony offenses. African American males are disproportionately represented among juvenile offenders in the United States. In 2000, black youth were approximately 16% of the U.S. population between the ages of 10-17; however, they accounted for 42% of juvenile arrests for violent crime. This study explored putative factors associated with juvenile offending among a sample of African American adolescent males. The independent variables in this study were academic achievement, religiosity, parenting styles and discrimination. The dependent variables were delinquent behavior and arrest. The data used in this study were from a larger NIDA funded longitudinal study that included approximately 425 African American youths. The data collection method involved structured interviews and questionnaires. The participants for the original study were selected via random sampling from all students attending middle school in Miami-Dade County. The study examined the hypotheses that African American males retrospectively reporting (a) high academic achievement, (b) high religiosity, (c) authoritarian parenting and (d) low perceptions of discrimination are less likely to be involved in delinquent behavior and are also less likely to be arrested. Results indicated that among African American adolescent males, delinquent behavior had a significant relationship (p The findings indicated that experimental studies are needed to clarify cause and effect relationship among the variables associated with juvenile offending among African American males, which may differ from those associated with juvenile offending among other groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landscape characteristics, disturbances, and temporal variability influence predator-prey relationships, but are often overlooked in experimental studies. In the Everglades, seasonal disturbances force the spatial overlap of predators and prey, potentially increasing predation risk for prey. This study examined seasonal and diel patterns of fish use of canals and assessed predation risk for small fishes using an encounter rate model. I deployed an imaging sonar in Everglades canals to quantify density and swimming speeds of fishes, and detect anti-predator behaviors by small fishes. Generally, seasonal declines of marsh water-levels increased the density of large fishes in canals. Densities of small and large fishes were positively correlated and, as small-fish density increased, schooling frequency also increased. At night, schools disbanded and small fishes were observed congregating along the canal edge. The encounter rate model predicted highest predator-prey encounters during the day, but access to cover may reduce predation risk for small fishes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.