2 resultados para Fat-1

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the effect of edible coatings, type of oil used, and cooking method on the fat content of commercially available French fries. In contrast to earlier studies that examined laboratory prepared French fries, this study assesses commercially available French fries and cooking oils. This study also measured the fat content in oven baked French fries, comparing the two cooking methods in addition to the comparisons of different coatings’ oil uptake. The findings of this study were that the type of oil used did have a significant impact on the final oil content of the uncoated and seasoned fries. The fries coated in modified food starch and fried in peanut and soy oils had what appeared to be significantly higher oil content than those fried in corn oil or baked, but the difference was not statistically significant. Additionally, fat content in French fries with hydrocollidial coatings that were prepared in corn oil were not significantly different than French fries with the same coating that were baked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical Cyclones are a continuing threat to life and property. Willoughby (2012) found that a Pareto (power-law) cumulative distribution fitted to the most damaging 10% of US hurricane seasons fit their impacts well. Here, we find that damage follows a Pareto distribution because the assets at hazard follow a Zipf distribution, which can be thought of as a Pareto distribution with exponent 1. The Z-CAT model is an idealized hurricane catastrophe model that represents a coastline where populated places with Zipf- distributed assets are randomly scattered and damaged by virtual hurricanes with sizes and intensities generated through a Monte-Carlo process. Results produce realistic Pareto exponents. The ability of the Z-CAT model to simulate different climate scenarios allowed testing of sensitivities to Maximum Potential Intensity, landfall rates and building structure vulnerability. The Z-CAT model results demonstrate that a statistical significant difference in damage is found when only changes in the parameters create a doubling of damage.