15 resultados para Farmhouses -- Conservation and restoration -- Catalonia -- Lluçanès
em Digital Commons at Florida International University
Resumo:
The Caribbean Island Biodiversity Hotspot is the largest insular system of the New World and a priority for biodiversity conservation worldwide. The tribe Adeliae (Euphorbiaceae) has over 35 species endemic to this hotspot, representing one of the most extraordinary cases of speciation in the West Indies, involving taxa from Cuba, Hispaniola, Jamaica, and the Bahamas. These species form a monophyletic group and traditionally have been accommodated in two endemic genera: Lasiocroton and Leucocroton. A study based on: (1) scanning electron microscopy of pollen and trichomes, (2) macromorphology, and (3) molecular data, was conducted to reveal generic relationships within this group. Phylogenies were based on parsimony and Bayesian analyses of nucleotide sequences of the ITS regions of the nuclear ribosomal DNA and the non-coding chloroplast DNA spacers psbM-trnD and ycf6-pcbM. One species, Lasiocroton trelawniensis, was transferred from the tribe into the genus Bernardia. Of the remaining species, three major monophyletic assemblages were revealed, one was restricted to limestone ares of Hispaniola and was sister to a clade with two monophyletic genera, Lasiocroton and Leucocroton. Morphological, biogeographical, and ecological data provided additional support for each of these three monophyletic assemblages. The Hispaniolan taxa were accommodated in a new genus with four species: Garciadelia. Leucocroton includes the nickel hyperaccumulating species from serpentine soils of Cuba, while the rest of the species were placed in Lasiocroton, a genus restricted to limestone areas. The geographic history of the islands as well as the phylogenetic placement of the Leucocroton-alliance, allows the research to include the historical biogeography of the alliance across the islands of the Caribbean based on a dispersal-vicariance analysis. The alliance arose on Eastern Cuba and Hispaniola, with Lasiocroton and Leucocroton diverging on Eastern Cuba according to soil type. Within Leucocroton, the analysis shows two migrations across the serpentine soils of Cuba. Additional morphological, ecological, and phylogenetic analyses support four new species in Cuba (Lasiocroton gutierrezii) and Hispaniola ( Garciadelia abbottii, G. castilloae, and G. mejiae). ^
Resumo:
Modern civilization has developed principally through man's harnessing of forces. For centuries man had to rely on wind, water and animal force as principal sources of power. The advent of the industrial revolution, electrification and the development of new technologies led to the application of wood, coal, gas, petroleum, and uranium to fuel new industries, produce goods and means of transportation, and generate the electrical energy which has become such an integral part of our lives. The geometric growth in energy consumption, coupled with the world's unrestricted growth in population, has caused a disproportionate use of these limited natural resources. The resulting energy predicament could have serious consequences within the next half century unless we commit ourselves to the philosophy of effective energy conservation and management. National legislation, along with the initiative of private industry and growing interest in the private sector has played a major role in stimulating the adoption of energy-conserving laws, technologies, measures, and practices. It is a matter of serious concern in the United States, where ninety-five percent of the commercial and industrial facilities which will be standing in the year 2000 - many in need of retrofit - are currently in place. To conserve energy, it is crucial to first understand how a facility consumes energy, how its users' needs are met, and how all internal and external elements interrelate. To this purpose, the major thrust of this report will be to emphasize the need to develop an energy conservation plan that incorporates energy auditing and surveying techniques. Numerous energy-saving measures and practices will be presented ranging from simple no-cost opportunities to capital intensive investments.
The non-timber forest products sector in nepal : policy issues in plant conservation and utilization
Resumo:
The non-timber forest products (NTFPs) sector in Nepal is being promoted with the concept of sustainable management as articulated by the Convention on Biological Diversity. To promote and regulate this sector, Nepal adopted the Herbs and NTFP Development Policy in 2004. The goal of this thesis was to assess the effectiveness of this policy along with other forestry and natural resource policies in Nepal concerning the conservation and sustainable use of NTFPs. I conducted open-ended semi-structured interviews with 28 key informants in summer 2006 in Nepal where I also collected relevant documents and publications. I did qualitative analysis of data obtained from interviews and document review. The research found many important issues that need to be addressed to promote the NTFP sector as envisioned by the Government of Nepal. The findings of this research will help to further implement the policy and promote the NTFP sector through sustainable management practices.
Resumo:
This study addressed the effects of salinity and pot size on the interaction between leguminous plant hosts and arbuscular mycorrhizal fungi in four pine rockland soils using a shade house trap-plant experiment. Little is known about the belowground diversity of pine rocklands and the interactions between aboveground and belowground biota – an increased understanding of these interactions could lead to improved land management decisions, conservation and restoration efforts. Following twelve weeks of growth, plants were measured for root and shoot dry biomass and percent colonization by arbuscular mycorrhizal fungi. Overall, arbuscular mycorrhizal fungi had positive fitness effects on the four legume species (Cajanus cajan, Chamaecrista fasciculata, Tephrosia angustissima and Abrus precatorius), improving their growth rate, shoot and root biomass; pot size influenced plant-fungal interactions; and percent colonization by arbuscular mycorrhizal fungi was influenced by soil type as well as salinity.
Resumo:
The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world's largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people's values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict. My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region's history and contemporary conflicts are shaped by the broader political economy of development in south Florida. My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.
Resumo:
The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world’s largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people’s values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict. My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region’s history and contemporary conflicts are shaped by the broader political economy of development in south Florida. My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.
Resumo:
Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.
Resumo:
The management and restoration of the Biscayne Bay Coastal Wetlands (BBCW) is a complex issue. Unlike other natural areas under the supervision of the National Park System, the BBCW had endured many years of neglect and abuse by homesteaders who, prior to the establishment of Biscayne National Monument in 1968, had free reign of the area and tried to farm and develop the land by ditching and infilling. Furthermore, public works projects, dating back to the early 1900’s for mosquito control, land reclamation, and storm surge protection along with homesteader activities have combined to compartmentalize the coastal wetlands of present Biscayne National Park and adjacent marshes.
Resumo:
The maintenance of species richness is often a priority in the management of nature reserves, where consumptive use of resources is generally prohibited. The purpose of this research was to improve management by understanding the vegetation dynamics in the lowlands of Nepal. The objectives were to determine vegetation associations in relation to environments and human-induced disturbances that affect vegetation dynamics on floodplains, where upstream barrages had altered flooding patterns, and consumptive use of plant resources was influencing natural processes. Floodplain vegetation in relation to physical environments and disturbances were studied along transects, perpendicular to the course of the Mahakali River in the western Terai, Nepal. Forest structural changes were studied for three years in ten plots. A randomized split-block experiment with nine burning and grazing treatments was performed in seasonally flooded grasslands. A semi-structured questionnaire was used to assess people's socio-economic status, natural resource use patterns and conservation attitudes. ^ Elevation, soil organic matter, nitrogen, percentage of sand and grazing intensity were significant in delineating herbaceous vegetation assemblages, whereas elevation and livestock grazing were significant in defining forest type boundaries. On the floodplain islands, highly grazed Dalbergia sissoo-Acacia catechu forests were devoid of understory woody vegetation, but the lightly grazed D. sissoo-mixed forests had a well-developed second canopy layer, comprising woody species other than D. sissoo and A. catechu. In grasslands, species richness and biomass production were highest at intermediate disturbance level represented by the lightly grazed and ungrazed early-burned treatments. Ethnicity, education and resource use patterns were important in influencing conservation attitudes. A succession towards the mixed forests would occur in D. sissoo-dominated floodplain forests, where dams and barrages reduce flooding and associated fluvial processes, and if livestock grazing is stopped, as occasionally suggested by nature conservationists. In seasonally flooded grasslands, early burning with moderate grazing would enhance the species diversity and productivity. There is a need to implement a participatory integrated wetland management plan, to include community development, education and off farm income generation, to assure participatory conservation and management of wetlands in Nepal. ^
Resumo:
Tree islands in the Shark River Slough of the Everglades National Park (ENP), in the southern state of Florida in the United States, are part of a wetland system of densely vegetated ridges interspersed within relatively open sloughs. Human alteration of this system has had dramatic negative effects on the landscape of the region and restoration efforts will require adjusting the hydrology of the region to assure the preservation of these important ecologic features. The primary objectives of this study were to document the hydrology in the vicinity of tree islands in ENP by measuring velocities in time and space and by characterizing suspended sediments. The results of such measurements were interpreted with respect to factors that may limit tree island growth. The measurements were conducted in the vicinity of three tree islands known as Black Hammock (BH), Gumbo Limbo (GL), and an unnamed island that was named for this study as Satin Leaf (SL). Acoustical Doppler Velocity (ADV) meters were used for measuring the low velocities of the Everglades water flow. Properties of suspended sediments were characterized through measurements of particle size distribution, turbidity, concentration and particle density. Mean velocities observed at each of the tree islands varied from 0.9 to 1.4 cm/s. Slightly higher mean velocities were observed during the wet season (1.2–1.6 cm/s) versus the dry season (0.8–1.3 cm/s). Maximum velocities of more than 4 cm/s were measured in areas of Cladium jamaicense die-off and at the hardwood hammock (head) of the islands. At the island’s head, water is channelized around obstructions such as tree trunks in relatively rapid flow, which may limit the lateral extent of tree island growth. Channelization is facilitated by shade from the tree canopy, which limits the growth of underwater vegetation thereby minimizing the resistance to flow and limiting sediment deposition. Suspended sediment concentrations were low (0.5–1.5 mg/L) at all study sites and were primarily of organic origin. The mean particle size of the suspended sediments was 3 μm with a distribution that was exponential. Critical velocities needed to cause re-suspension of these particles were estimated to be above the actual velocities observed. Sediment transport within the water column appears to be at a near steady state during the conditions evaluated with low rates of sediment loss balanced by presumably the release of equivalent quantities of particles of organic origin. Existing hydrologic conditions do not appear to transport sufficient suspended sediments to result in the formation of tree islands. Of interest would be to collect hydrologic and sediment transport data during extreme hydrologic events to determine if enough sediment is transported under these conditions to promote sufficient sediment accumulations.
Resumo:
The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions.
Resumo:
Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.
Resumo:
Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.
Resumo:
Coastal environments can be highly susceptible to environmental changes caused by anthropogenic pressures and natural events. Both anthropogenic and natural perturbations may directly affect the amount and the quality of water flowing through the ecosystem, both in the surface and subsurface and can subsequently, alter ecological communities and functions. The Florida Everglades and the Sian Ka'an Biosphere Reserve (Mexico) are two large ecosystems with an extensive coastal mangrove ecotone that represent a historically altered and pristine environment, respectively. Rising sea levels, climate change, increased water demand, and salt water intrusion are growing concerns in these regions and underlies the need for a better understanding of the present conditions. The goal of my research was to better understand various ecohydrological, environmental, and hydrogeochemical interactions and relationships in carbonate mangrove wetlands. A combination of aqueous geochemical analyses and visible and near-infrared reflectance data were employed to explore relationships between surface and subsurface water chemistry and spectral biophysical stress in mangroves. Optical satellite imagery and field collected meteorological data were used to estimate surface energy and evapotranspiration and measure variability associated with hurricanes and restoration efforts. Furthermore, major ionic and nutrient concentrations, and stable isotopes of hydrogen and oxygen were used to distinguish water sources and infer coastal groundwater discharge by applying the data to a combined principal component analysis-end member mixing model. Spectral reflectance measured at the field and satellite scales were successfully used to estimate surface and subsurface water chemistry and model chloride concentrations along the southern Everglades. Satellite imagery indicated that mangrove sites that have less tidal flushing and hydrogeomorphic heterogeneity tend to have more variable evapotranspiration and soil heat flux in response to storms and restoration. Lastly, water chemistry and multivariate analyses indicated two distinct fresh groundwater sources that discharge to the phosphorus-limited estuaries and bays of the Sian Ka'an Biopshere Reserve; and that coastal groundwater discharge was an important source for phosphorus. The results of the study give us a better understanding of the ecohydrological and hydrogeological processes in carbonate mangrove environments that can be then be extrapolated to similar coastal ecosystems in the Caribbean.
Resumo:
An awareness of mercury (Hg) contamination in various aquatic environments around the world has increased over the past decade, mostly due to its ability to concentrate in the biota. Because the presence and distribution of Hg in aquatic systems depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of complexing constituents and natural sorbents, under those different factors. An improved understanding of the subject will support the selection of monitoring, remediation, and restoration technologies. The coupling of equilibrium chemical reactions with transport processes in the model PHREEQC offers an advantage in simulating and predicting the fate and transport of aqueous chemical species of interest. Thus, a great variety of reactive transport problems could be addressed in aquatic systems with boundary conditions of specific interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in aquatic environments, it is necessary to expand its thermodynamic database, confirm it and then evaluate it in applications where potential exists for its calibration and continued validation. The objectives of this study were twofold: 1) to develop, expand, and confirm the Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the fate of Hg species in the presence of complexing constituents and natural sorbents under different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate the new database in flow and transport scenarios, at two field test beds: Oak Ridge Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and is of much concern. Overall, this research enhanced the capability of the PHREEQC model to simulate the coupling of the Hg reactions in transport conditions. It also demonstrated its usefulness when applied to field situations.